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The Setting

Alice wants to prove an NP statement to Bob without revealing
her private witness

However, Alice only has the resource to send a single message to
Bob. Therefore, they cannot run an interactive zero-knowledge
proof

To make matters worse, 1-message zero-knowledge is only possible
for languages in BPP! (Think: Why?)

Fortunately, they both have access to a common random string
that was (honestly) generated by someone they both trust

Can Alice prove statements non-interactively to Bob using the
common random string?
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Non-Interactive Proofs

Syntax. A non-interactive proof system for a language L with witness
relation R is a tuple of algorithms (K,P,V) such that:

Setup: σ ← K(1n) outputs a common random string

Prove: π ← P(σ, x, w) takes as input a common random string σ,
a statement x ∈ L and a witness w and outputs a proof π

Verify: V (σ, x, π) outputs 1 if it accepts the proof and 0 otherwise

A non-interactive proof system must satisfy completeness and
soundness properties
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Non-Interactive Proofs (contd.)

Completeness: ∀x ∈ L, ∀w ∈ R(x):

Pr
[
σ ← K(1n);π ← P(σ, x, w) : V(σ, x, π) = 1

]
= 1

Non-Adaptive Soundness: There exists a negligible function ν(·) s.t.
∀x /∈ L:

Pr
[
σ ← K(1n);∃ π s.t. V(σ, x, π) = 1

]
6 ν(n)

Adaptive Soundness: There exists a negligible function ν(·) s.t.:

Pr
[
σ ← K(1n);∃ (x, π) s.t. x /∈ L ∧ V(σ, x, π) = 1

]
6 ν(n)

Note: In non-adaptive soundness, the adversary chooses x before
seeing the common random string whereas in adaptive soundness, it
can choose x depending upon the common random string
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Non-Interactive Zero Knowledge (NIZK)

Definition (Non-Adaptive NIZK)
A non-interactive proof system (K,P,V) for a language L with witness
relation R is non-adaptive zero-knowledge if there exists a PPT
simulator S s.t. for every x ∈ L, w ∈ R(x), the output distributions of
the following two experiments are computationally indistinguishable:

REAL(1n, x, w) IDEAL(1n, x)

σ ← K(1n) (σ, π)← S(1n, x)
π ← P(σ, x, w)
Output (σ, π) Output (σ, π)

Note: The simulator generates both the common random string and
the simulated proof given the statement x is input. In particular, the
simulated common random string can depend on x and can therefore
only be used for a single proof
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Non-Interactive Zero Knowledge (contd.)

Definition (Adaptive NIZK)
A non-interactive proof system (K,P,V) for a language L with witness
relation R is adaptive zero-knowledge if there exists a PPT simulator
S = (S0,S1) s.t. for every x ∈ L, w ∈ R(x), the output distributions of
the following two experiments are computationally indistinguishable:

REAL(1n, x, w) IDEAL(1n, x)

σ ← K(1n) (σ, τ)← S0(1n)
π ← P(σ, x, w) π ← S1(σ, τ, x)
Output (σ, π) Output (σ, π)

Note 1: Here, τ is a “trapdoor” for the simulated common random
string σ that is used by S1 to generate an accepting proof for x without
knowing the witness.

Note 2: This definition captures reusable common random strings
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Remarks on NIZK Definition

In NIZK, the simulator is given “extra power” to choose the
common random string, along with possibly a trapdoor to enable
simulation without a witness
In interactive ZK, the extra power to the simulator was the ability
to “reset” the verifier
Indeed, a simulator must always have some extra power over the
normal prover, otherwise, the definition would be impossible to
realize for languages outside BPP

In NIZKs, the extra power is ok since we require
indistinguishability of the “joint distribution” over the common
random string and the proof
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From Non-Adaptive to Adaptive Soundness

Lemma
There exists an efficient transformation from any non-interactive proof
system (K,P,V) with non-adaptive soundness into a non-interactive
proof system (K′,P′,V′) with adaptive soundness

Proof Strategy: Let `(n) be the length of the statements
Repeat (K,P,V) polynomially many times (with fresh randomness)
so that soundness error decreases to 2−2`(n)

Non-adaptive soundness means that a randomly sampled σ is
“bad” for a statement x with probability 2−2`(n)

By Union Bound, σ is “bad” for all statements with probability
2−`(n). Therefore, we have adaptive soundness
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NIZKs for NP

I. Non-adaptive Zero Knowledge: We first construct NIZKs for
NP with non-adaptive zero-knowledge property using the following two
steps:

Step 1. Construct a NIZK proof system for NP in the
hidden-bit model. This step is unconditional

Step 2. Using trapdoor permutations, transform any NIZK proof
system for language in the hidden-bit model to a
non-adaptive NIZK proof system in the common random
string model

II. Adaptive Zero Knowledge: Next, we transform non-adaptive
NIZKs for NP into adaptive NIZKs for NP. This step only requires
one-way functions, which are implied by trapdoor permutations.

Putting all the steps together, we obtain adaptive NIZKs for NP based
on trapdoor permutations
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Roadmap

Today: Defining NIZKs in hidden-bit model, and transformation
from NIZKs in hidden-bit model to NIZKs in common random
string model

Next time: NIZKs for NP in the hidden-bit model

Homework: Non-adaptive NIZKs to Adaptive NIZKs
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NIZK in Hidden-Bit Model

Syntax. A non-interactive proof system for a language L with witness
relation R in the hidden-bit model is a tuple of algorithms
(KHB,PHB,VHB) such that:

Setup: r ← KHB(1n) outputs the hidden random string

Prove: (I, π)← PHB(r, x, w) generates the indices I ⊆ [|r|] of r to
reveal, along with a proof π

Verify: VHB(I, {ri}i∈I , π) outputs 1 if it accepts the proof and 0
otherwise

Such a proof system must satisfy completeness and soundness (similar
to as defined earlier)
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NIZK in Hidden-Bit Model (contd.)

Definition (NIZK in Hidden Bit Model)
A non-interactive proof system (KHB,PHB,VHB) for a language L with
witness relation R in the hidden-bit model is (non-adaptive)
zero-knowledge if there exists a PPT simulator SHB s.t. for every x ∈ L,
w ∈ R(x), the output distributions of the following two experiments are
computationally indistinguishable:

REAL(1n, x, w) IDEAL(1n, x)

r ← KHB(1n) (I, {ri}i∈I , π)← SHB(1n, x)
(I, π)← PHB(r, x, w)

Output
(
I, {ri}i∈I , π

)
Output

(
I, {ri}i∈I , π

)
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From NIZK in HB Model to NIZK in CRS Model

Intuition: How to transform a “public” random string into a “hidden”
random string

Suppose the prover samples a trapdoor permutation (f, f−1) with
hardcore predicate h

Given a common random string σ = σ1, . . . , σn, the prover can
compute r = r1, . . . , rn where:

ri = h(f−1(σi))

If f is a permutation and h is a hard-core predicate, then r is
guaranteed to be random

Now r can be treated as the hidden random string: V can only see
the parts of it that the prover wishes to reveal
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Construction

Let F = {f, f−1} be a family of 2n trapdoor permutations with
hardcore predicate h. Let (KHB,PHB,VHB) be a NIZK proof system for
L in the hidden-bit model with soundness error 2−2n

Construction of (K,P,V):
K(1n): Output a random string σ = σ1, . . . , σn s.t. ∀i, |σi| = n

P(σ, x, w): Execute the following steps:
Sample (f, f−1)← F(1n)
Compute αi = f−1(σi) for i ∈ [n]
Compute ri = h(αi) for i ∈ [n]
Compute (I, ϕ)← PHB(r, x, w)
Output π = (f, I, {αi}i∈I ,Φ)

V(σ, x, π): Parse π = (f, I, {αi}i∈I ,Φ) and:
Check f ∈ F and f(αi) = σi for every i ∈ I
Compute ri = h(αi) for i ∈ I
Output VHB(I, {ri}i∈I , x,Φ)
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(K,P, V ) is a Non-Interactive Proof

Completeness: α is uniformly distributed since f−1 is a
permutation and σ is random. Further, since h is a hard-core
predicate, r is also uniformly distributed. Completeness follows
from the completeness of (KHB,PHB,VHB)

Soundness: For any f = f0, r is uniformly random, so from
(non-adaptive) soundness of (KHB,PHB,VHB), we have:

Pr
σ

[P ∗ can cheat using f0] 6 2−2n

Since there are only 2n possible choices of f (verifier checks that
f ∈ F), by union bound, it follows:

Pr
σ

[P ∗ can cheat ] 6 2−n
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Proof of Zero Knowledge: Simulator

Let SHB be the simulator for (KHB,PHB,VHB)

Simulator S(1n, x):
1 (I, {ri}i∈I ,Φ)← SHB(1n, x)

2 (f, f−1)← F
3 αi ← h−1(ri) for every i ∈ I
4 σi = f(αi) for every i ∈ I

5 σi
$←{0, 1}n for every i /∈ I

6 Output (σ, f, I, {αi}i∈I ,Φ)

Note: h−1(ri) denotes sampling from the pre-image of ri, which can be
done efficiently by simply trying random αi’s until h(αi) = ri
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Proof of Zero Knowledge: Hybrids

Hybrid H0(1
n, x, w) := REAL(1n, x, w):

1 σ ← K(1n) where σ = σ1, . . . , σn

2 (f, f−1)← F
3 αi ← f−1(σi) for every i ∈ [n]

4 ri = h(αi) for every i ∈ [n]

5 (I,Φ)← PHB(r, x, w)

6 Output (σ, f, I, {αi}i∈I ,Φ)
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Proof of Zero Knowledge: Hybrids (contd.)

Hybrid H1(1
n, x, w):

1 αi
$←{0, 1}n for every i ∈ [n]

2 (f, f−1)← F
3 σi ← f(αi) for every i ∈ [n]

4 ri = h(αi) for every i ∈ [n]

5 (I,Φ)← PHB(r, x, w)

6 Output (σ, f, I, {αi}i∈I ,Φ)

H0 ≈ H1: In H1, we sample αi at random and then compute σi
(instead of sampling σi and then computing αi as in H0). This induces
an identical distribution since f is a permutation
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Proof of Zero Knowledge: Hybrids (contd.)

Hybrid H2(1
n, x, w):

1 ri
$←{0, 1} for every i ∈ [n]

2 (f, f−1)← F
3 αi ← h−1(ri) for every i ∈ [n]

4 σi = f(αi) for every i ∈ [n]

5 (I,Φ)← PHB(r, x, w)

6 Output (σ, f, I, {αi}i∈I ,Φ)

H1 ≈ H2: In H2, we again change the sampling order: first sample
r = r1, . . . , rn at random and then sample αi from the pre-image of ri
(as described earlier). This distribution is identical to H1
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Proof of Zero Knowledge: Hybrids (contd.)

Hybrid H3(1
n, x, w):

1 ri
$←{0, 1} for every i ∈ [n]

2 (f, f−1)← F
3 αi ← h−1(ri) for every i ∈ [n]

4 (I,Φ)← PHB(r, x, w)

5 σi = f(αi) for every i ∈ I

6 σi
$←{0, 1}n for every i /∈ I

7 Output (σ, f, I, {αi}i∈I ,Φ)

H2 ≈c H3: In H3, we output random σi for i ∈ I. From security of
hard-core predicate h, it follows that:

{f(h−1(ri)} ≈c Un
Indistinguishability of H2 and H3 follows using the above equation
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Proof of Zero Knowledge: Hybrids (contd.)

Hybrid H4(1
n, x) := IDEAL(1n, x):

1 (I, {ri}i∈I ,Φ)← SHB(1n, x)

2 (f, f−1)← F
3 αi ← h−1(ri) for every i ∈ I
4 σi = f(αi) for every i ∈ I

5 σi
$←{0, 1}n for every i /∈ I

6 Output (σ, f, I, {αi}i∈I ,Φ)

H3 ≈c H4: In H4, we swap PHB with SHB. Indistinguishability follows
from the zero-knowledge property of (KHB,PHB,VHB)
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