Non-Interactive Zero Knowledge (1) J

CS 600.442 Modern Cryptography

Fall 2016

[SRNG{ R ER VY (S MG RFITeT-s NNl Non-Interactive Zero Knowledge (I) Fall 2016 1/21

The Setting

o Alice wants to prove an NP statement to Bob without revealing
her private witness

e However, Alice only has the resource to send a single message to
Bob. Therefore, they cannot run an interactive zero-knowledge
proof

e To make matters worse, 1-message zero-knowledge is only possible
for languages in BPP! (Think: Why?)

o Fortunately, they both have access to a common random string
that was (honestly) generated by someone they both trust

e Can Alice prove statements non-interactively to Bob using the
common random string?

[SRNG{ R E DBV Y (S MG RFITeT-s NNl Non-Interactive Zero Knowledge (I) Fall 2016 2 /21

Non-Interactive Proofs

Syntax. A non-interactive proof system for a language L with witness
relation R is a tuple of algorithms (K, P, V) such that:

e Setup: o + K(1") outputs a common random string

e Prove: 7 < P(o,z,w) takes as input a common random string o,
a statement € L and a witness w and outputs a proof

e Verify: V(o,z,7) outputs 1 if it accepts the proof and 0 otherwise

A non-interactive proof system must satisfy completeness and
soundness properties

[SRNG{ R E DBV Y (S MG RFITeT-s NNl Non-Interactive Zero Knowledge (I) Fall 2016 3/21

Non-Interactive Proofs (contd.)

Completeness: Vo € L, Yw € R(z):

Pr [0 +— K(1");7m < P(o,z,w) : V(o,x,7) = 1] =1
Non-Adaptive Soundness: There exists a negligible function v(-) s.t.
Vo ¢ L:

Pr [a KA™);3 7 s.t. V(o, 2, 7) = 1} < v(n)
Adaptive Soundness: There exists a negligible function v(-) s.t.:

Pr [a — K({1™);3 (z,m) st. a ¢ LAV(o,z,7) = 1] <v(n)

Note: In non-adaptive soundness, the adversary chooses x before
seeing the common random string whereas in adaptive soundness, it
can choose z depending upon the common random string

[SRNG{ R E DBV Y (S MG RFITeT-s NNl Non-Interactive Zero Knowledge (I) Fall 2016 4 /21

Non-Interactive Zero Knowledge (NIZK)

Definition (Non-Adaptive NIZK)

A non-interactive proof system (K, P,V) for a language L with witness
relation R is non-adaptive zero-knowledge if there exists a PPT
simulator S s.t. for every x € L, w € R(x), the output distributions of
the following two experiments are computationally indistinguishable:

REAL(1", z,w) | IDEAL(1", z)
o+ K(1™) (o,m) « S(1", x)
m + P(o,z,w)

Output (o,7) | Output (o,7)

Note: The simulator generates both the common random string and
the simulated proof given the statement x is input. In particular, the
simulated common random string can depend on x and can therefore
only be used for a single proof

[SRNG{ R E DBV (S MG RF I T3 NNl Non-Interactive Zero Knowledge (I) Fall 2016 5 /21

Non-Interactive Zero Knowledge (contd.)

Definition (Adaptive NIZK)

A non-interactive proof system (K, P, V) for a language L with witness
relation R is adaptive zero-knowledge if there exists a PPT simulator
S = (8o, 81) s.t. for every x € L, w € R(x), the output distributions of
the following two experiments are computationally indistinguishable:

REAL(1",z,w) | IDEAL(1", z)
o+ K(1") (o,7) + Sp(1™)
7w+ P(o,z,w) | 7 + Si(o, T,)
Output (o,7) | Output (o,7)

Note 1: Here, 7 is a “trapdoor” for the simulated common random
string ¢ that is used by &1 to generate an accepting proof for z without
knowing the witness.

Note 2: This definition captures reusable common random strings

[SRNGIRE DBV (S MG RFITeT-s NNl Non-Interactive Zero Knowledge (I) Fall 2016 6 /21

Remarks on NIZK Definition

e In NIZK, the simulator is given “extra power” to choose the
common random string, along with possibly a trapdoor to enable
simulation without a witness

o In interactive ZK, the extra power to the simulator was the ability
to “reset” the verifier

o Indeed, a simulator must always have some extra power over the
normal prover, otherwise, the definition would be impossible to
realize for languages outside BPP

o In NIZKs, the extra power is ok since we require
indistinguishability of the “joint distribution” over the common
random string and the proof

[SRNG{ R E DBV Y (S MG RFITeT-s NNl Non-Interactive Zero Knowledge (I) Fall 2016 7 /21

From Non-Adaptive to Adaptive Soundness

There exists an efficient transformation from any mon-interactive proof
system (K, P, V) with non-adaptive soundness into a non-interactive
proof system (K', P, V') with adaptive soundness

Proof Strategy: Let ¢(n) be the length of the statements

e Repeat (K, P,V) polynomially many times (with fresh randomness)
so that soundness error decreases to 2~2¢(n)

e Non-adaptive soundness means that a randomly sampled o is
“bad” for a statement 2 with probability 224"

e By Union Bound, o is “bad” for all statements with probability
2=4(n) . Therefore, we have adaptive soundness

[SRNGIRER BV (S MG RF I T3 NNl Non-Interactive Zero Knowledge (I) Fall 2016 8 /21

NIZKs for NP

I. Non-adaptive Zero Knowledge: We first construct NIZKs for
NP with non-adaptive zero-knowledge property using the following two
steps:
Step 1. Construct a NIZK proof system for NP in the
hidden-bit model. This step is unconditional

Step 2. Using trapdoor permutations, transform any NIZK proof
system for language in the hidden-bit model to a
non-adaptive NIZK proof system in the common random
string model

II. Adaptive Zero Knowledge: Next, we transform non-adaptive
NIZKs for NP into adaptive NIZKs for NP. This step only requires
one-way functions, which are implied by trapdoor permutations.

Putting all the steps together, we obtain adaptive NIZKs for NP based
on trapdoor permutations

[SRNG{ R E DBV Y (S MG RFITeT-s NNl Non-Interactive Zero Knowledge (I) Fall 2016 9 /21

Roadmap

e Today: Defining NIZKs in hidden-bit model, and transformation
from NIZKs in hidden-bit model to NIZKs in common random
string model

o Next time: NIZKs for NP in the hidden-bit model

e Homework: Non-adaptive NIZKs to Adaptive NIZKs

[SRNG{ R E DBV Y (S MG RFITeT-s NNl Non-Interactive Zero Knowledge (I) Fall 2016 10 / 21

NIZK in Hidden-Bit Model

Syntax. A non-interactive proof system for a language L with witness
relation R in the hidden-bit model is a tuple of algorithms
(KHBa PH87 VHB) such that:

e Setup: r + Kyg(1™) outputs the hidden random string

e Prove: (I,m) < Puyg(r,z,w) generates the indices I C [|r|] of 7 to
reveal, along with a proof 7

e Verify: Vyg(I,{ri}icr, ™) outputs 1 if it accepts the proof and 0
otherwise

Such a proof system must satisfy completeness and soundness (similar
to as defined earlier)

[SRNG{ R E DBV Y (S MG RFITeT-s NNl Non-Interactive Zero Knowledge (I) Fall 2016 11 /21

NIZK in Hidden-Bit Model (contd.)

Definition (NIZK in Hidden Bit Model)

A non-interactive proof system (Kyg, Pug, Vug) for a language L with
witness relation R in the hidden-bit model is (non-adaptive)
zero-knowledge if there exists a PPT simulator Syg s.t. for every x € L,
w € R(x), the output distributions of the following two experiments are
computationally indistinguishable:

REAL(1", z,w) | IDEAL(1", 2)

r < KHB(ln) (I, {T’z‘}z‘e[,ﬂ') <—SHB(1n,ZL')
(I,m) < Pyg(r,z,w)

Output (I, {’l“i}iej,ﬂ') Output <I, {ri}ig,ﬁ)

[SRNGIU R ER VY (S MG RFITeT-s NNl Non-Interactive Zero Knowledge (I) Fall 2016 12 / 21

From NIZK in HB Model to NIZK in CRS Model

Intuition: How to transform a “public” random string into a “hidden”
random string

o Suppose the prover samples a trapdoor permutation (f, f~1) with
hardcore predicate h

e Given a common random string ¢ = o1, ...,0y,, the prover can
compute r = rq,...,7r, where:

ri = h(f~ (o))
e If f is a permutation and A is a hard-core predicate, then r is
guaranteed to be random

o Now r can be treated as the hidden random string: V' can only see
the parts of it that the prover wishes to reveal

[SRNG{ R E DBV Y (S MG RFITeT-s NNl Non-Interactive Zero Knowledge (I) Fall 2016 13 /21

Construction

Let F = {f, f~'} be a family of 2" trapdoor permutations with
hardcore predicate h. Let (Kyg, Pug, Vug) be a NIZK proof system for
L in the hidden-bit model with soundness error 272"
Construction of (K,P,V):
K(1™): Output a random string o = o1, ...,0, s.t. Vi,|o;| =n
P(o,z,w): Execute the following steps:
e Sample (f, f~1) « F(1)
o Compute o = f~1(0;) for i € [n]
e Compute r; = h(«;) for i € [n]
e Compute (I,) < Pyg(r,z,w)
o Output m = (f, I,{a;}icr, @)
V(o,z,m): Parse m = (f,I,{a;}icr, ®) and:
@ Check f € F and f(«;) = o; for every i € T
e Compute r; = h(ay) for i € 1
e Output Vug(Z,{ri}icr, z, @)

Non-Interactive Zero Knowledge (I) Fall 2016 14 / 21

(K, P,V) is a Non-Interactive Proof

o Completeness: « is uniformly distributed since f~! is a
permutation and o is random. Further, since h is a hard-core
predicate, r is also uniformly distributed. Completeness follows
from the completeness of (Kyg, Pug, Vus)

@ Soundness: For any f = fg, r is uniformly random, so from
(non-adaptive) soundness of (Kug, Pug, Vug), we have:

Pr[P* can cheat using fo] < 272"
g

Since there are only 2" possible choices of f (verifier checks that
f € F), by union bound, it follows:

Pr[P* can cheat | < 27"

o

[SRNG{ R E DBV Y (S MG RFITeT-s NNl Non-Interactive Zero Knowledge (I) Fall 2016 15 / 21

Proof of Zero Knowledge: Simulator

Let Syg be the simulator for (Kyg, Pus, Vus)

Simulator S(1", x):
O (I, {ri}icr,®) + Sus(1",2)
@ (f,fH)«F
Q «; «— h7(r;) forevery i € I
Q o0, = f(a;) for every i € I
Qo & {0,1}" for every i ¢ I
@ Output (o, f,I,{a;}icr, @)

Note: h~!(r;) denotes sampling from the pre-image of r;, which can be
done efficiently by simply trying random «;’s until h(a;) = r;

[SRNG{ R E DBV Y (S MG RFITeT-s NNl Non-Interactive Zero Knowledge (I) Fall 2016 16 / 21

Proof of Zero Knowledge: Hybrids

Hybrid Hy(1",z,w) := REAL(1", z,w):
Q o+ K(1") where 0 = 01,...,0,
Q@ (f,fH)«F
Q «; «— f(0y) for every i € [n]
Q r; = h(wy) for every i € [n]
Q@ (I,?) « Pup(r,z,w)
@ Output (o, f, I,{a;}icr, P)

Non-Interactive Zero Knowledge (I) Fall 2016

17 / 21

Proof of Zero Knowledge: Hybrids (contd.)

Hybrid H; (1", z,w):
Q «; & {0,1}" for every i € [n]
@ (ffH)«rF
@ o, « f(ay) for every i € [n]
Q@ 7 = h(wy) for every i € [n]
Q@ (I,9) « Pyg(r,z,w)
@ Output (o, f, I, {ai}icr, ®)
Hy ~ Hy: In Hy, we sample «; at random and then compute o;

(instead of sampling o; and then computing «; as in Hy). This induces
an identical distribution since f is a permutation

[SRNG{ R E DBV Y (S MG RFITeT-s NNl Non-Interactive Zero Knowledge (I) Fall 2016 18 / 21

Proof of Zero Knowledge: Hybrids (contd.)

Hybrid Hy (1", z,w):
Q r; < {0,1} for every i € [n]
@ (f.f)«rF
@ «; « h™(r;) for every i € [n]
Q o; = f(«a;) for every i € [n]
Q@ ([,9) « Pyg(r,z,w)
O Output (o, f, I, {ai}ticr, ®)
Hy ~ Hy: In Hy, we again change the sampling order: first sample

r=ri,..., , at random and then sample «; from the pre-image of r;
(as described earlier). This distribution is identical to H;

[SRNG{ R E DBV Y (S MG RFITeT-s NNl Non-Interactive Zero Knowledge (I) Fall 2016 19 / 21

Proof of Zero Knowledge: Hybrids (contd.)

Hybrid H3 (1", z,w):
Q r; < {0,1} for every i € [n]
@ (f.f)«rF
Q@ «; « h™(ry) for every i € [n]
Q (I,?) «+ Pug(r,z,w)
@ o, = f(a;) for every i € I
Q o, < {0,1}" for every i ¢ I
@ Output (o, f, I, {ci}ier,)

Hs ~, Hs: In Hs, we output random o; for ¢ € I. From security of
hard-core predicate h, it follows that:

{f(h™H(r)} e Un

Indlstmgulshablhty of Hs and Hj follows using the above equation

Non-Interactive Zero Knowledge (I) Fall 2016 20 / 21

Proof of Zero Knowledge: Hybrids (contd.)

Hybrid Hy(1", x) := IDEAL(1", x):
O (I {ritier, ®) < Sus(1",)
@ (f.f H)eF
Q@ «; «+ h1(r;) for every i € I
Q 0, = f(ay) for every i € I
Q@ 0; < {0,1}" for every i ¢ I
O Output (o, f, I, {ai}icr, ®)

Hjs ~. Hy: In Hy, we swap Pyg with Syg. Indistinguishability follows
from the zero-knowledge property of (Kyg, Pug, V)

Non-Interactive Zero Knowledge (I) Fall 2016 21 /21

