Secure Computation - I

CS 600.442 Modern Cryptography

Fall 2016

Motivating Example

Consider two billionaires Alice and Bob with net worths x and y, respectively:

- They want to find out who is richer by computing the following function

$$
f(x, y)= \begin{cases}1 & \text { if } x>y \\ 0 & \text { otherwise }\end{cases}
$$

- Potential Solution: Alice sends x to Bob, who sends y to Alice. They each compute f on their own.
- Problem: Alice learns Bob's net worth (and vice-versa). No privacy!
- Main Question: Can Alice and Bob compute f in a "secure manner" s.t. they only learn the output of f, and nothing more?

General Setting

Two parties A and B, with private inputs x and y, respectively:

- They want to "securely" compute a function f
- If both A and B are honest, then they should learn the output $f(x, y)$
- Even if one party is adversarial, it should not learn anything beyond the output (and its own input)
- Think: How to formalize this security requirement?

Types of Adversaries

Two types of adversaries:

- Honest but curious (a.k.a. semi-honest): Such an adversary follows the instructions of the protocol, but will later analyze the protocol transcript to learn any "extra information" about the input of the other party
- Malicious: Such an adversary can deviate from the protocol instructions and follow an arbitrary strategy

Note: We will only consider semi-honest adversaries

Secure Computation: Intuition

- Want to formalize that no semi-honest adversary learns anything from the protocol execution beyond its input and the (correct) output
- Idea: Use simulation paradigm, as in zero-knowledge proofs
- View of adversary in the protocol execution can be efficiently simulated given only its input and output, and without the input of the honest party

Secure Computation: Definition

Definition (Semi-honest Secure Computation)

A protocol $\pi=(A, B)$ securely computes a function f in the semi-honest model if there exists a pair of non-uniform PPT simulator algorithms $\mathcal{S}_{A}, \mathcal{S}_{B}$ such that for every security parameter n, and all inputs $x, y \in\{0,1\}^{n}$, it holds that:

$$
\begin{aligned}
& \left\{\mathcal{S}_{A}(x, f(x, y)), f(x, y)\right\} \approx\left\{e \leftarrow[A(x) \leftrightarrow B(y)]: \operatorname{View}_{A}(e), \operatorname{Out}_{B}(e)\right\}, \\
& \left\{\mathcal{S}_{B}(y, f(x, y)), f(x, y)\right\} \approx\left\{e \leftarrow[A(x) \leftrightarrow B(y)]: \operatorname{View}_{B}(e), \operatorname{Out}_{A}(e)\right\} .
\end{aligned}
$$

Remarks on Definition

- Recall: In zero-knowledge, we only require indistinguishability of simulated view and adversary's view in the real execution
- Here, indistinguishability is w.r.t. the joint distribution over the adversary's view and the honest party's output
- This is necessary for correctness: it implies that output of the honest party in the protocol execution must be indistinguishable from the correct output $f(x, y)$
- If we remove this requirement, then a clearly wrong protocol where parties are instructed to output y would be trivially secure!

Oblivious Transfer

Consider the following functionality, called, 1-out-of-2 oblivious transfer (OT):

- Two parties: Sender A, and Receiver B
- Inputs: A 's input is a pair of bits $\left(a_{0}, a_{1}\right)$, and B 's input is a bit b
- Outputs: B 's output is a_{b}, and A receives no output

Note: Definition of secure computation promises that in a secure OT protocol, A does not learn b and B does not learn a_{1-b}

Importance of Oblivious Transfer

- Can be realized from physical channels [Wiener,Rabin]
- OT is complete: given a secure protocol for OT, any function can be securely computed
- OT is necessary: OT is the minimal assumption for secure computation

Oblivious Transfer: Construction

Let $\left\{f_{i}\right\}_{i \in \mathcal{I}}$ be a family of trapdoor permutations with sampling algorithm Gen. Let h be a hardcore predicate for any f_{i}.
Sender's input: $\left(a_{0}, a_{1}\right)$ where $a_{i} \in\{0,1\}$
Receiver's input: $b \in\{0,1\}$
Protocol OT $=(A, B)$:
$A \rightarrow B: A$ samples $\left(f_{i}, f_{i}^{-1}\right) \leftarrow \operatorname{Gen}\left(1^{n}\right)$ and sends f_{i} to B
$B \rightarrow A: B$ samples $x \stackrel{\$}{\leftarrow}\{0,1\}^{n}$ and computes $y_{b}=f_{i}(x)$. It also samples $y_{1-b} \stackrel{\$}{\leftarrow}\{0,1\}^{n}$. B sends $\left(y_{0}, y_{1}\right)$ to A
$A \rightarrow B: A$ computes the inverse of each value y_{j} and XORs the hard-core bit of the result with a_{j} :

$$
z_{j}=h\left(f_{i}^{-1}\left(y_{j}\right)\right) \oplus a_{j}
$$

A sends $\left(z_{0}, z_{1}\right)$ to B
$B\left(x, b, z_{0}, z_{1}\right): B$ outputs $h(x) \oplus z_{b}$

$\mathrm{OT}=(A, B)$ is Semi-honest Secure : Intuition

- Security against A : Both y_{0} and y_{1} are uniformly distributed and therefore independent of b. Thus, b is hidden from A
- Security against B : If B could learn a_{1-b}, then it would be able to predict the hardcore predicate

Note: A malicious B can easily learn a_{1-b} by deviating from the protocol strategy

$\mathrm{OT}=(A, B)$ is Semi-honest Secure : Simulator \mathcal{S}_{A}

Simulator $\mathcal{S}_{A}\left(\left(a_{0}, a_{1}\right), \perp\right)$:
(1) Fix a random tape r_{A} for A. Run honest emulation of A using $\left(a_{0}, a_{1}\right)$ and r_{A} to obtain the first message f_{i}
(2) Choose two random strings $y_{0}, y_{1} \in\{0,1\}^{n}$ as B 's message
(3) Run honest emulation of A using $\left(y_{0}, y_{1}\right)$ to obtain the third message $\left(z_{0}, z_{1}\right)$
(1) Stop and output \perp

Claim: The following two distributions are identical:
$\left\{\mathcal{S}_{A}\left(\left(a_{0}, a_{1}\right), \perp\right), a_{b}\right\}$ and
$\left\{e \leftarrow\left[A\left(a_{0}, a_{1}\right) \leftrightarrow B(b)\right]: \operatorname{View}_{A}(e), \operatorname{Out}_{B}(e)\right\}$
Proof: The only difference between \mathcal{S}_{A} and real execution is in step 2. However, since f is a permutation, y_{0}, y_{1} are identically distributed in both cases.

$\mathrm{OT}=(A, B)$ is Semi-honest Secure : Simulator \mathcal{S}_{B}

Simulator $\mathcal{S}_{B}\left(b, a_{b}\right)$:
(1) Sample f_{i}
(2) Choose random tape r_{B} for B. Run honest emulation of B using $\left(b, r_{B}, f_{i}\right)$ to produce $\left(x, y_{0}, y_{1}\right)$ s.t. $y_{b}=f_{i}(x)$ and $y_{1-b} \stackrel{\$}{\leftarrow}_{\leftarrow}\{0,1\}^{n}$
(3) Compute $z_{b}=h(x) \oplus a_{b}$ and $z_{1-b} \stackrel{\$}{\leftarrow}\{0,1\}$
(1) Output $\left(z_{0}, z_{1}\right)$ as third message and stop

Claim: The following two distributions are indistinguishable: $\left\{\mathcal{S}_{B}\left(b, a_{b}\right), \perp\right\}$ and $\left\{e \leftarrow\left[A\left(a_{0}, a_{1}\right) \leftrightarrow B(b)\right]: \operatorname{View}_{B}(e), \operatorname{Out}_{A}(e)\right\}$
Proof: The only difference is in step 3 , where \mathcal{S}_{B} computes z_{1-b} as a random bit. However, since $h\left(f_{i}^{-1}\left(y_{1-b}\right)\right)$ is indistinguishable from random (even given y_{1-b}), this change is indistinguishable

Remarks

1-out-of- k OT:

- The previous protocol can be easily generalized to construct 1-out-of- k OT for $k>2$

Semi-honest vs Malicious:

- In reality, adversary may be malicious and not semi-honest
- Goldreich-Micali-Wigderson [GMW] gave a compiler to transform any protocol secure against semi-honest adversary into one secure against malicious adversary
- The transformation uses coin-flipping (to make sure that adversary's random tape is truly random) and zero-knowledge proofs (to make sure that adversary is following the protocol instructions)
- Details outside the scope of this class

