
Lecture 4: Pseudorandomness - II

Lecture 4: Pseudorandomness - II 1 / 19

Last Time

Hard Core Predicates
Computational Indistinguishability
Prediction Advantage
Pseudorandom Distributions & Next-bit Unpredictability

Lecture 4: Pseudorandomness - II 2 / 19

Today

Completeness of Next-bit Test for Pseudorandomness
Pseudorandom Generators

1-bit stretch
Polynomial stretch

Pseudorandom functions

Lecture 4: Pseudorandomness - II 3 / 19

Recall

Definition (Pseudorandom Ensembles)

An ensemble {Xn}, where Xn is a distribution over {0, 1}`(n), is said to
be pseudorandom if:

{Xn} ≈ {U`(n)}

Definition (Next-bit Unpredictability)

An ensemble of distributions {Xn} over {0, 1}`(n) is next-bit
unpredictable if, for all 0 6 i < `(n) and n.u. PPT A, ∃ negligible
function ν(·) s.t.:

Pr[t = t1 . . . t`(n) ∼ Xn : A(t1 . . . ti) = ti+1] 6
1

2
+ ν(n)

Theorem (Completeness of Next-bit Test)
If {Xn} is next-bit unpredictable then {Xn} is pseudorandom.

Lecture 4: Pseudorandomness - II 4 / 19

Next-bit Unpredictability =⇒ Pseudorandomness

H(i)
n :=

{
x ∼ Xn, u ∼ Un : x1 . . . xiui+1 . . . u`(n)

}
First Hybrid: H0

n is the uniform distribution U`(n)

Last Hybrid: H`(n)
n is the distribution Xn

Suppose H(`(n))
n is next-bit unpredictable but not pseudorandom

H
(0)
n 6≈ H(`(n))

n =⇒ ∃ i ∈ [`(n)− 1] s.t. H(i)
n 6≈ H(i+1)

n

Now, next bit unpredictability is violated
Exercise: Do the full formal proof

Lecture 4: Pseudorandomness - II 5 / 19

Pseudorandom Generators (PRG)

Definition (Pseudorandom Generator)
A deterministic algorithm G is called a pseudorandom generator (PRG)
if:

G can be computed in polynomial time
|G(x)| > |x|{
x← {0, 1}n : G(x)

}
≈c

{
U`(n)

}
where `(n) = |G(0n)|

The stretch of G is defined as: |G(x)| − |x|

Can we construct PRG with even 1-bit stretch?

What about many bits? Can we generically stretch?

Lecture 4: Pseudorandomness - II 6 / 19

PRG with 1-bit stretch

Remember the hardcore predicate?

It is hard to guess h(s) even given f(s)

Let G(s) = f(s)‖h(s) where f is a OWF
Some small issues:

– |f(s)| might be less than |s|
– f(s) may always start with prefix 101 (not random)

Solution: let f be a one-way permutation (OWP) over {0, 1}n
– Domain and Range are of same size, i.e., |f(s)| = |s| = n

– f(s) is uniformly random over {0, 1}n if s is

∀y : Pr[f(s) = y] = Pr[s = f−1(y)] = 2−n

⇒ f(s) is uniform and cannot start with a fix value!

Lecture 4: Pseudorandomness - II 7 / 19

PRG with 1-bit stretch

Let f : {0, 1}∗ → {0, 1}∗ be a OWP

Let h : {0, 1}∗ → {0, 1} be a hardcore predicate for f

Construction: G(s) = f(s) ‖ h(s)

Theorem (PRG based on OWP)
G is a pseudorandom generator with 1-bit stretch.

Think: Proof?
Proof Idea: Use next-bit unpredictability. Since first n bits of the
output are uniformly distributed (since f is a permutation), any
adversary for next-bit unpredictability with non-negligible
advantage 1

p(n) must be predicting the (n+1)th bit with advantage
1

p(n) . Build an adversary for hard-core predicate to get a
contradiction.

Lecture 4: Pseudorandomness - II 8 / 19

One-bit stretch PRG =⇒ Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times

Construction of Gpoly : {0, 1}n → {0, 1}`(n):
Let G : {0, 1}n → {0, 1}n+1 be a one-bit stretch PRG

s = X0

G(X0) = X1‖b1
...

G(X`(n)−1) = X`(n)‖b`(n)

Gpoly(s) := b1 . . . b`(n)

Think: Proof?

Lecture 4: Pseudorandomness - II 9 / 19

Proof that Gpoly is pseudorandom

Want:
{
s← {0, 1}n : Gpoly(s)

}
≈c

{
U`(n)

}
Let D be any non-uniform PPT algorithm.

Step 0:

Experiment H0

s = X0

G(X0) = X1‖b1
G(X1) = X2‖b2

...
G(X`−1) = X`‖b`

Output D(b1b2 . . . b`)

Claim:
∣∣∣Prs[D(G′(s)) = 1]− Prs[H0 = 1]

∣∣∣ = 0.
Proof: Input of D is identically distributed in both cases. �

Lecture 4: Pseudorandomness - II 10 / 19

Proof that Gpoly is pseudorandom

Step 1: modify H0 one line at a time.

Experiment H0

s = X0

G(X0) = X1‖b1
G(X1) = X2‖b2

...
G(X`−1) = X`‖b`

Output D(b1b2 . . . b`).

Experiment H1

s = X0

X1‖b1 = s1‖u1
G(s1) = X2‖b2

...
G(X`−1) = X`‖b`

Output D(u1b2 . . . b`).

Claim:
∣∣∣Prs[H0 = 1]− Prs,s1,u1 [H1 = 1]

∣∣∣ 6 µ(n)
Can similarly define H2, . . . ,H`−1 s.t. in H`−1, b1b2 . . . b` is
sampled from U`

To prove that Gpoly is PRG, it suffices to show that H0 ≈c H`

Lecture 4: Pseudorandomness - II 11 / 19

Proof that Gpoly is pseudorandom

Step 1: modify H0 one line at a time.

Experiment H0

s = X0

G(X0) = X1‖b1
G(X1) = X2‖b2

...
G(X`−1) = X`‖b`

Output D(b1b2 . . . b`).

Experiment H1

s = X0

X1‖b1 = s1‖u1
G(s1) = X2‖b2

...
G(X`−1) = X`‖b`

Output D(u1b2 . . . b`).

Claim:
∣∣∣Prs[H0 = 1]− Prs,s1,u1 [H1 = 1]

∣∣∣ 6 µ(n)
Can similarly define H2, . . . ,H`−1 s.t. in H`−1, b1b2 . . . b` is
sampled from U`

To prove that Gpoly is PRG, it suffices to show that H0 ≈c H`

Lecture 4: Pseudorandomness - II 11 / 19

Proof that Gpoly is pseudorandom (contd.)

Step 2: Hybrid Lemma

For contradiction, suppose that Gpoly is not a PRG, i.e., H0 and
H` are distinguishable with non-negligible probability 1

p(n)

By Hybrid Lemma, there exists i s.t. Hi and Hi+1 are
distinguishable with probability 1

p(n)`(n)

Idea: Contradict the security of G

Lecture 4: Pseudorandomness - II 12 / 19

Proof that Gpoly is pseudorandom (contd.)

Step 3: Breaking security of G

For simplicity, suppose that i = 0 (proof works for any i)
Construct D to break the pseudorandomness of G as follows

– D gets as input Z‖r sampled either as X1‖b1 or as s1‖u1
– Compute X2‖b2 = G(Z) and continue as the rest of the

experiment(s)
– Output D(rb2 . . . b`)

If Z‖r is pseudorandom, i.e., sampled as X1‖b1 = G(s), then
output of D is distributed identically to the output of H0

Otherwise, i.e., Z‖r is (truly) random, and therefore output of D is
is distributed identically to the output of H1

Hence: D distinguishes the output of G with advantage 1
p(n)`(n)

and runs in polynomial time. This is a contradiction �

Lecture 4: Pseudorandomness - II 13 / 19

Concluding Remarks on PRG

OWF =⇒ PRG: [Impagliazzo-Levin-Luby-89] and [Hastad-90]
Celebrated result! Good to read

More Efficient Constructions: [Vadhan-Zheng-12]
Computational analogues of Entropy
Non-cryptographic PRGs and Derandomization:
[Nisan-Wigderson-88]

Lecture 4: Pseudorandomness - II 14 / 19

Going beyond Poly Stretch

PRGs can only generate polynomially long pseudorandom strings
Think: How to efficiently generate exponentially long
pseudorandom strings?

Idea: Functions that index exponentially long pseudorandom strings

Lecture 4: Pseudorandomness - II 15 / 19

Random Functions

How do we define a random function?

Consider functions F : {0, 1}n → {0, 1}n

Think: How many such functions are there?
Write F as a table:

first column has input strings from 0n to 1n;
against each input, second column has the function value
i.e., each row is of the form (x, F (x))

The size of the table for F = 2n × n = n2n

Total number of functions mapping n bits to n bits = 2n2
n

Lecture 4: Pseudorandomness - II 16 / 19

Random Functions

There are two ways to define a random function:

First method: A random function F from n bits to n bits is a
function selected uniformly at random from all 2n2n functions that
map n bits to n bits
Second method: Use a randomized algorithm to describe the
function. Sometimes more convenient to use in proofs

randomized program M to implement a random function F
M keeps a table T that is initially empty.
on input x, M has not seen x before, choose a random string y and
add the entry (x, y) to the table T
otherwise, if x is already in the table, M picks the entry
corresponding to x from T , and outputs that

M ’s output distribution identical to that of F .

Lecture 4: Pseudorandomness - II 17 / 19

Random Functions

Truly random functions are huge random objects

No matter which method we use, we cannot store the entire
function efficiently

With the second method, we can support polynomial calls to the
function efficiently because M will only need polynomial space and
time to store and query T
Can we use some crypto magic to make a function F ′ so that:

it “looks like” a random function
but actually needs much fewer bits to describe/store/query?

Lecture 4: Pseudorandomness - II 18 / 19

Pseudorandom Functions (PRF)

PRF looks like a random function, and needs polynomial bits to be
described

Think: What does “looks like” mean?
First Idea: Use computational indistinguishability

– Random Functions and PRFs are hard to tell apart efficiently

Think: Should the distinguisher get the description of either a
random function or a PRF?
Main Issue: A random function is of exponential size

– D can’t even read the input efficiently
– D can tell by looking at the size

Idea: D can only query the function on inputs of its choice, and
see the output.

Lecture 4: Pseudorandomness - II 19 / 19

