
CS 600.442 – Modern Cryptography 9 September 2015

Lecture 1: Computational Indistinguishability

Instructor: Abhishek Jain Scribe: Mason Hemmel

1 Candidate Weak One-Way function

During the previous class, we established what strong and weak one-way functions were, and we
finished class with the intuition that fmult is, in fact, a weak one way function due to the hardness
of the factoring problem. During this lecture, we will formalize this intuition and prove that this
is indeed true.

Intuition. We know fmult(x, y) = xy, but to make xy hard to factor, just any x and y won’t do.
For instance, if either x or y are even numbers then factoring is trivial. In order to tie the factoring
of xy directly to the factoring problem, we will have to make sure that x and y both come from
Πn, the set of primes from 1 to 2n.

While this is simple to say for a mathematician, this selection appears to give serious issues to
a programmer. We can’t simply pull primes out of thin air, after all. However, the answer to our
problem is closer to pulling from air than we might have guessed!

1.0.1 Chebyshev’s Theorem

Chebyshev’s theorem states: For x > 1, π(x) > x
2log(x) where π(x) is the number of primes <= x.1

A corollary of this theorem is that at least a 1
2n fraction of n-bit numbers are prime.

Given this fact along with the fact that primality testing can be done in polynomial time,2

then we realize that we can simply generate random numbers and check their primality with the
guarantee that we will find two primes in polynomial time. With this fact, we may proceed with
the formal proof.

1.1 Proof

For the sake of reaching contradiction, we assume there exists A′ that inverts fmult(x, y) = xy with
probability P >= 1− 1

q(n) for some infinite set of n ∈ (N) where q(n) is some polynomial. Without

loss of generality, we will specify that q(n) = 8n2. Given A′, we will now construct an adversary A
that breaks our assumption of the hardness of factoring in the following way:

Adversary A(z):

1. Generate x, y ∈ 0, 1n

2. if x and y both prime

3. z′ ← z

4. else

1A proof of this statement can be found on page 43 of the Pass & Shelat lecture notes.
2See page 60 of Pass & Shelat.

1-1



5. z′ = xy

6. w ← A′(z′)

7. if x, y are both prime

8. output w

Since A′ and primality testing both are PPT, A is a PPT as well. Further, we note that in A
we have replicated the distribution that A′ expects (i.e. we must fail when x and y are prime) in
order to assure that it works as expected.

But what is the probability that A succeeds? In order to do this, we will analyze when it fails.
Specifically, there are two cases in which this occurs:

1. A fails when x and y are not both prime, as it fails to pass our prospective value to our solver.
By Chebyshev’s theorem, this will happen with P <= 1− 1

4n2

2. A will also fail if A′ fails, but we know that this happens with P <= 1
8n2

By Union Bound, A will fail with P <= (1 − 1
4n2 ) + 1

8n2 , which means that it succeeds with
p <= 1

8n2 . This is a non-negligible probability, which means that A has broken the assumption
that factoring is hard, meaning that it cannot exist. Hence, A′ cannot exist either, meaning that
fmult is indeed a weak one-way function.

2 Intuition on Amplifying Weak One-Way Functions into Strong
One-Way Functions

Now that we have established that fmult is a weak one-way function, we now return to the idea
that we can make strong one-way functions out of weak one-way functions. In order to begin
strengthening these functions, we first have to ask ourselves what makes them weak. As we can
see even from the example of fmult, our issue is that while some inputs are challenging, others are
trivial. At a high level, we can see that all we need to do is reduce our space of weak inputs.

To begin developing an idea for how this might be done, we will consider the function g(x1, x2) =
f(x1)f(x2). Before we discuss it further, we will attempt to move towards a formalizing of the
concept of weakness of a function. Specifically, we will call p the density of strong instances of
f(·), with 1− p necessarily being the weak instances of f(·). Also, we note that p < 1. Returning
to g(·), we can now see that if either instances x1 or x2 is hard, then the entire output of g(·) is
hard. Continuing this logic, it stands to reason that each time we add an input to g(·), then we
halve the remaining “weakness” space. That is to say, by adding a second input, we give ourselves
a 3

4 chance that g() is hard (since a valid inverter for g(·) finds the entire pre-image). By adding a
third, we would have a 7

8 chance, and so on and so forth. Extending this logic out to its conclusion
gives a function g(·) with n inputs whose hardness is 1− (1− p)n.

Formalizing this intuition, however, is much more non-trivial. It will be part of the homework.

3 Introduction to Pseudorandomness

We will begin our discussion of pseudorandomness by introducing various primitives which will lead
to a formal introduction.
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Definition 1 (Distribution) We say that X is a distribution over a sample space S if X assigns
a probability Ps to each sample s ∈ S such that

∑
s∈S

Ps = 1

Now that we know what a distribution is, we might want to ask ourselves if there is a way to
formalize the conceptual distance between two or more of them. With an answer, we may be able
to find a distribution that, while distinct from the random distribution, resembles it for practical
purposes. Moving forward with this intuition, it is clear that for us the similarity must only hold
under tests that can be executed in polynomial time relative to the size of the sample the test
has. In essence, we want to create a situation in which a given sample of one distribution will be
indistinguishable from a sample from another distribution, even if the parent distributions differ.
First, we will formalize the concept of an ideal sample size.

Definition 2 (Ensemble of Distributions) A sequence {Xn}n∈N is called an ensemble if ∀n ∈
N, Xn is a probability distribution over {0, 1}`(n) where `(n) is some polynomial in n

Given this formalization, we can then introduce a formal definition of computational indistin-
guishability.

Definition 3 (Computational Indistinguishability) Let {Xn}n∈N and {Yn}n∈N be ensembles
such that Xn and Yn are probability distributions over {0, 1}`(n). We say that these two ensembles
are computationally indistinguishable if ∀ n.u. PPT distinguishers D, ∃ negligible function µ(·)
such that ∀n ∈ N, |Pr[t < −Xn, D(t) = 1]− Pr[t < −Yn, D(t) = 1| <= µ(n)

Properties of Computational Indistinguishability. The following two properties of compu-
tational indistinguishability are extremely useful in proofs.

1. Robustness: Polynomial-time transformations over two computationally indistinguishable
ensembles preserve computational indistinguishability. That is, if {Xn} ≈ {Yn}, then for any
PPT M , {M(Xn)} ≈ {M(Yn)}.

2. Transitivity: Given {Xn} ≈ {Yn} and {Yn} ≈ {Zn}, it follows that {Xn} ≈ {Zn}. This
property is also known as the Hybrid Lemma.

Proof. (Robustness Property) By way of contradiction, ∃DM which distinguishes M(Xn) from
M(Yn) where M(·) is a Turing machine running in polynomial time. Given DM , we will construct
D which distinguishes {Xn} from {Yn}. The construction of D is quite simple: upon receiving
{Xn} and {Yn}, we will apply M(·) to both. We will pass the resulting values to DM , which will
then distinguish each from the other and pass the result on to D(·). This means that D(·) breaks
computational indistinguishability, meaning it cannot exist. Therefore, DM cannot exist either.
Hence, computational indistinguishability is robust.

Proof. (Transitivity Property) We will prove a more general statement. Let X1, . . . , Xm be
probability ensembles such that for every i, Xi ≈ Xi+1. We want to prove that X1 ≈ Xm. Suppose
that this is not true, i.e., X1 is distinguishable from Xm. We will then show that there exists
i ∈ [m− 1] s.t. Xi is distinguishable from Xi+1, which will get us a contradiction.

This proof will proceed using the triangle inequality, which states that |a+ b| <= |a|+ |b|. We
may generalize this inequality to |

∑k
i=1 xi| <=

∑k
i=1 |xi|. Suppose that D distinguishes X1 and

Xm with non-negligible probability ε(n). Then:
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|Pr[t← X1 : D(t) = 1]− Pr[t← Xm : D(t) = 1]| >= ε(n)

Let gi = Pr[t ← Xm : D(t) = 1|. Then we can rewrite the above equation as |g1 − gm|. Given
this rewriting, we have

ε(n) ≤ |g1 − gm|
= |g1 − g2 + g2 − g3 + ...+ gm−1 − gm|

= |
m−1∑
i=1

gi − gi+1|

≤
m−1∑
i=1

|gi − gi+1|

This is to say that the sum of the m − 1 values must exceed ε(n). Hence, there needs to be
some i such that

|gi − gi+1| ≥
ε(n)

m− 1
>

ε

m

However, |gi − gi+1| also happens to be the same probability with which D distinguishes Xi and

Xi+1. As a result, D distinguishes Xi and Xi+1 with non-negligible probability ε(n)
m , as required
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