CS 600.442 — Modern Cryptography 31 August 2015
Lecture 1: Introduction

Instructor: Abhishek Jain Scribe: Gabe Kaptchuk and Carlo Olcese

In this lecture, we will establish some basic definitions that will be used throughout this course.
Towards the end, we will make an attempt to formalize the weakest cryptographic primitive, namely,
one-way functions.

1 Algorithms and Running Times

Definition 1 (Algorithm) An algorithm A is a deterministic Turing Machine whose inputs and
outputs are strings over an alphabet ¥ = {0, 1}.

Definition 2 (Running Time) An algorithm A has running time T'(n) if for all inputs x €
{0,1}™ (i.e., strings of length n over the input alphabet), A(x) halts in time T(n).

Definition 3 (Polynomial Time) An algorithm A is a polynomial-time algorithm if 3c € R s.t.
A has running time T(n) = n®. Further, if A is polynomial time, then we say that it is efficient.

Note that here, ¢ could be an arbitrary constant. In particular, it may not be small. Then,
does this definition of an efficient algorithm reflect what we commonly think of as being efficient?
For example, consider ¢ = 100. In practice, n'00 may actually be considered “inefficient.” For our
purposes, however, we will stick with this definition of efficiency. In particular, for us, inefficient
algorithms correspond to those that have super-polynomial running times such as T'(n) = 2" or
T(n) = nlosn,

So far, we have only considered deterministic algorithms. In computer science, and specifically,
in cryptography, randomness plays a central role. Therefore, throughout the course, we will be
interested in randomized (a.k.a. probabilistic) algorithms.

Definition 4 (Randomized Algorithm) A randomized algorithm A is a Turing Machine with
an additional randomness tape where each bit is chosen uniformly and independently. The output
of a randomized algorithm is a distribution.

Similar to polynomial-time deterministic algorithms, we can also define probabilistic polynomial-
time algorithms.

Definition 5 (Probabilistic Polynomial Time) A randomized algorithm A that has a polyno-
mial running time is referred to as a probabilistic polynomial-time (abbreviated as PPT) algorithm.

Throughout the class, we will be interested in algorithms that compute functions of our choice.
Towards this, we define the notion of function computation.
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2 Function Computation

Definition 6 (Function Computation) A randomized algorithm A computes a function f :
{0,1} — {0,1}* if Vo € {0,1}*, A on input x outputs f(x) with probability 1.

When we say “with probability 1,” what exactly is this probability over? It is over the random
tape input to the randomized algorithm A.

Remark 1 (Restricting to binary outputs) Without loss of generality, we can relaz the above
definition to only consider functions with binary outputs. This is because given f, we can define a
sequence of functions g1, 9o, ..., where g; computes the ith output bit of f. Now, we can use A to
compute each g; separately.

Remark 2 (Relaxing the success probability) We can further relax the above definition to
require A to succeed with probability 1 — ﬁ as opposed to 1. In other words, A is allowed to fail
with probability ﬁ When |x| is large, the failure probability is extremely small, and therefore, A
correctly computes f most of the time. This will be sufficient for most applications that we will
consider in this course.

As it turns out, for the case of functions with boolean outputs, we can relax the definition even
further to require that A correctly computes f with only probability %—i— 1p(|z|) for some polynomial
p(+). Note that computing f with probability % is trivial since we can simply guess the (binary)
output of f. Hence, this is really the minimal condition for A to be “non-trivial.”

Definition 7 (Function Computation (Relaxed)) A randomized algorithm A is said to €(-)-
compute a function f:{0,1}* — {0,1} if Vo € {0,1}*, A on input x outputs f(x) with probability
e(lzl)-

Theorem 1 (Amplification) Let A be a randomized algorithm that €(-)-computes f : {0,1}* —

{0,1} for e(n) = 1 + ﬁ where q(-) is a polynomial. Then, there exists an algorithm A’ that
€ (+)-computes f, where €' (n) =1 — ﬁ

The above theorem states that we can amplify the success probability of A from slightly more
than one half to nearly 1. The main idea is to run A multiple times (on the same input), using
fresh random tape each time, and then take the majority vote.

Try to implement this idea for the case where ¢(-) is simply a constant. For example, say ¢ =
Then extend the proof to the general case. The formal proof uses Chernoff Bound.
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3 Adversaries

How should we model an adversary? We don’t want to place too many assumptions or limitations
on adversaries. In particular, we only want to assume that adversaries are “efficient,” but make no
other assumption regarding their behavior.

To capture efficient adversaries, we can model them as PPT algorithms. In particular, we will
consider non uniform PPT algorithms, abbreviated as n.u. PPT.
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Definition 8 (Adversary) A non-uniform PPT algorithm A (aka adversary) is a sequence of
probabilistic machines {A1, Ag, As, ...} for which 3 polynomial p(-) s.t ¥ input x, Ay, on input x
halts in time p(|x|). In other words, an adversary has a dedicated Turing Machine for every input
length.

Note that the weaker definition that models an adversary as a (uniform) PPT algorithm does
not capture adversaries that may be able to build a dedicated machine that breaks a cryptosystem
on a particular input length (but fails otherwise). The above definition that allows an adversary
to be a non-uniform PPT captures this case, and is therefore, stronger.

4 One Way Functions

We now consider the notion of one-way functions. Intuitively, a function f is one way if it is possible
to compute f(z) efficiently but “hard” to recover x given f(z).

Definition 9 (One Way Function (Informal Attempt)) A function f is one way if:
o [tis “easy” to compute f(x) given x.
o “Difficult” to compute x € f~(y) given y = f(z).

Remark 3 It may be possible to partially recover x. However, it should be hard to fully recover
x € f~1(y). In other words, for any adversary A, the probability that A can compute x given f(x)
is “small”.

In the next class, we will define one-way functions formally.

1-3



