Lecture 6: Pseudorandomness - II

Lecture 6: Pseudorandomness - II

(ロ) (四) (主) (主) (主) のへで

- Three steps:
 - Step 1: OWF (OWP) \implies Hardcore Predicate for OWF (OWP)
 - Step 2: Hardcore Predicate for OWF (OWP) \implies One-bit stretch \overrightarrow{PRG}
 - Step 3: One-bit stretch PRG \implies Poly-stretch PRG
- Last time: Step 2 for OWP and Step 3

・ロト ・回ト ・ヨト ・ヨト

- Three steps:
 - <u>Step 1</u>: OWF (OWP) \implies Hardcore Predicate for OWF (OWP)
 - Step 2: Hardcore Predicate for OWF (OWP) \implies One-bit stretch PRG
 - Step 3: One-bit stretch PRG \implies Poly-stretch PRG
- Last time: Step 2 for OWP and Step 3
- Today: Step 1

・ロト ・回ト ・ヨト ・ヨト

If $f: \{0,1\}^n \to \{0,1\}^n$ is a OWF, then:

・ロト ・回ト ・ヨト ・ヨト 三日

If $f: \{0,1\}^n \to \{0,1\}^n$ is a OWF, then: • $g: \{0,1\}^{2n} \to \{0,1\}^{2n}$, where g(x,r) := (f(x), r), is also a OWF

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 − のへで

If $f: \{0,1\}^n \to \{0,1\}^n$ is a OWF, then:

• $g: \{0,1\}^{2n} \to \{0,1\}^{2n}$, where g(x,r) := (f(x), r), is also a OWF

• $h(x,r) := \langle x,r \rangle$ is a hardcore predicate for g(x,r)

ヘロト 人間ト 人団ト 人団ト 三日

If $f: \{0,1\}^n \to \{0,1\}^n$ is a OWF, then:

•
$$g: \{0,1\}^{2n} \to \{0,1\}^{2n}$$
, where $g(x,r) := (f(x), r)$, is also a OWF

• $h(x,r) := \langle x,r \rangle$ is a hardcore predicate for g(x,r)

• <u>Think</u>: Reduction?

・ロト ・回ト ・ヨト ・ヨト 三日

If $f: \{0,1\}^n \to \{0,1\}^n$ is a OWF, then:

•
$$g \colon \{0,1\}^{2n} \to \{0,1\}^{2n}$$
, where $g(x,r) \coloneqq (f(x),r)$, is also a OWF

• $h(x,r) := \langle x,r \rangle$ is a hardcore predicate for g(x,r)

- <u>Think</u>: Reduction?
- Main challenge: Adversary \mathcal{A} for h only outputs 1 bit. Need to build an inverter \mathcal{B} for f that outputs n bits.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

• Assumption: Given g(x, r) = (f(x), r), adversary \mathcal{A} always outputs $\overline{h(x, r)}$ correctly

- Assumption: Given g(x, r) = (f(x), r), adversary \mathcal{A} always outputs $\overline{h(x, r)}$ correctly
- Inverter \mathcal{B} :

- <u>Assumption</u>: Given g(x, r) = (f(x), r), adversary *A always* outputs $\overline{h(x, r)}$ correctly
- Inverter \mathcal{B} :
 - Compute $x_i^* \leftarrow \mathcal{A}(f(x), e_i)$ for every $i \in [n]$ where:

$$e_i = (\underbrace{0, \dots, 0}_{(i-1)\text{-times}}, 1, \dots, 0)$$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ → ヨ → のへで

- <u>Assumption</u>: Given g(x, r) = (f(x), r), adversary *A always* outputs $\overline{h(x, r)}$ correctly
- Inverter \mathcal{B} :
 - Compute $x_i^* \leftarrow \mathcal{A}(f(x), e_i)$ for every $i \in [n]$ where:

$$e_i = (\underbrace{0, \dots, 0}_{(i-1)\text{-times}}, 1, \dots, 0)$$

• Output $x^* = x_1^* \dots x_n^*$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ → ヨ → のへで

• Assumption: Given g(x, r) = (f(x), r), adversary \mathcal{A} outputs h(x, r) with probability $3/4 + \varepsilon(n)$ (over choices of (x, r))

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

- Assumption: Given g(x,r) = (f(x),r), adversary \mathcal{A} outputs h(x,r) with probability $3/4 + \varepsilon(n)$ (over choices of (x,r))
- Define set S:

$$S := \left\{ x \colon \Pr[r \stackrel{\text{\tiny{\$}}}{\leftarrow} \{0,1\}^n : \mathcal{A}(f(x),r) = h(x,r)] \geqslant \frac{3}{4} + \frac{\varepsilon(n)}{2} \right\}$$

・ロト ・回ト ・ヨト ・ヨト 三日

- Assumption: Given g(x,r) = (f(x),r), adversary \mathcal{A} outputs h(x,r) with probability $3/4 + \varepsilon(n)$ (over choices of (x,r))
- Define set S:

$$S := \left\{ x \colon \Pr[r \stackrel{\text{\tiny{\$}}}{\leftarrow} \{0,1\}^n : \mathcal{A}(f(x),r) = h(x,r)] \geqslant \frac{3}{4} + \frac{\varepsilon(n)}{2} \right\}$$

• $\Pr[x \in S] \ge \varepsilon(n)/2$

《曰》 《圖》 《注》 《注》 三注

- Assumption: Given g(x,r) = (f(x),r), adversary \mathcal{A} outputs h(x,r) with probability $3/4 + \varepsilon(n)$ (over choices of (x,r))
- Define set S:

$$S := \left\{ x \colon \Pr[r \stackrel{*}{\leftarrow} \{0,1\}^n : \mathcal{A}(f(x),r) = h(x,r)] \geqslant \frac{3}{4} + \frac{\varepsilon(n)}{2} \right\}$$

- $\Pr[x \in S] \ge \varepsilon(n)/2$
- Inverter \mathcal{B} :

・ロト ・回ト ・ヨト ・ヨト 三日

- Assumption: Given g(x,r) = (f(x),r), adversary \mathcal{A} outputs h(x,r) with probability $3/4 + \varepsilon(n)$ (over choices of (x,r))
- Define set S:

$$S := \left\{ x \colon \Pr[r \stackrel{*}{\leftarrow} \{0,1\}^n : \mathcal{A}(f(x),r) = h(x,r)] \geqslant \frac{3}{4} + \frac{\varepsilon(n)}{2} \right\}$$

- $\Pr[x \in S] \ge \varepsilon(n)/2$
- Inverter \mathcal{B} :
 - Let $a := \mathcal{A}(f(x), e_i + r)$ and $b := \mathcal{A}(f(x), r)$, for $r \stackrel{\$}{\leftarrow} \{0, 1\}^n$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ●目 ● のへで

- Assumption: Given g(x,r) = (f(x),r), adversary \mathcal{A} outputs h(x,r) with probability $3/4 + \varepsilon(n)$ (over choices of (x,r))
- Define set S:

$$S := \left\{ x \colon \Pr[r \stackrel{*}{\leftarrow} \{0,1\}^n : \mathcal{A}(f(x),r) = h(x,r)] \geqslant \frac{3}{4} + \frac{\varepsilon(n)}{2} \right\}$$

- $\Pr[x \in S] \ge \varepsilon(n)/2$
- Inverter \mathcal{B} :
 - Let $a := \mathcal{A}(f(x), e_i + r)$ and $b := \mathcal{A}(f(x), r)$, for $r \stackrel{\$}{\leftarrow} \{0, 1\}^n$
 - Compute $c := a \oplus b$

・ロト ・回ト ・ヨト ・ヨー うへの

- Assumption: Given g(x, r) = (f(x), r), adversary \mathcal{A} outputs h(x, r) with probability $3/4 + \varepsilon(n)$ (over choices of (x, r))
- Define set S:

$$S := \left\{ x \colon \Pr[r \stackrel{*}{\leftarrow} \{0,1\}^n : \mathcal{A}(f(x),r) = h(x,r)] \geqslant \frac{3}{4} + \frac{\varepsilon(n)}{2} \right\}$$

- $\Pr[x \in S] \ge \varepsilon(n)/2$
- Inverter \mathcal{B} :
 - Let $a := \mathcal{A}(f(x), e_i + r)$ and $b := \mathcal{A}(f(x), r)$, for $r \stackrel{\$}{\leftarrow} \{0, 1\}^n$
 - Compute $c := a \oplus b$
 - $c = x_i$ with probability $\frac{1}{2} + \varepsilon$ (Union Bound)

◆ロト ◆団ト ◆ヨト ◆ヨト → 田 → のへの

- Assumption: Given g(x, r) = (f(x), r), adversary \mathcal{A} outputs h(x, r) with probability $3/4 + \varepsilon(n)$ (over choices of (x, r))
- Define set S:

$$S := \left\{ x \colon \Pr[r \stackrel{\text{\tiny{\$}}}{\leftarrow} \{0,1\}^n : \mathcal{A}(f(x),r) = h(x,r)] \geqslant \frac{3}{4} + \frac{\varepsilon(n)}{2} \right\}$$

- $\Pr[x \in S] \ge \varepsilon(n)/2$
- Inverter \mathcal{B} :
 - Let $a := \mathcal{A}(f(x), e_i + r)$ and $b := \mathcal{A}(f(x), r)$, for $r \stackrel{\$}{\leftarrow} \{0, 1\}^n$
 - Compute $c := a \oplus b$
 - $c = x_i$ with probability $\frac{1}{2} + \varepsilon$ (Union Bound)
 - Repeat and take majority to obtain x_i^* s.t. $x_i^* = x_i$ with prob. $1 \operatorname{negl}(n)$

・ロト ・同ト ・ヨト ・ヨト ・ヨー つへの

- Assumption: Given g(x, r) = (f(x), r), adversary \mathcal{A} outputs h(x, r) with probability $3/4 + \varepsilon(n)$ (over choices of (x, r))
- Define set S:

$$S := \left\{ x \colon \Pr[r \stackrel{\text{\tiny{\$}}}{\leftarrow} \{0,1\}^n : \mathcal{A}(f(x),r) = h(x,r)] \geqslant \frac{3}{4} + \frac{\varepsilon(n)}{2} \right\}$$

- $\Pr[x \in S] \ge \varepsilon(n)/2$
- Inverter \mathcal{B} :
 - Let $a := \mathcal{A}(f(x), e_i + r)$ and $b := \mathcal{A}(f(x), r)$, for $r \stackrel{\$}{\leftarrow} \{0, 1\}^n$
 - Compute $c := a \oplus b$
 - $c = x_i$ with probability $\frac{1}{2} + \varepsilon$ (Union Bound)
 - Repeat and take majority to obtain x_i^* s.t. $x_i^* = x_i$ with prob. $1 \operatorname{negl}(n)$
 - Output $x^* = x_1^* \dots x_n^*$

◆ロト ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○のへの

Full Proof

Homework!

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

• OWF \implies PRG: [Impagliazzo-Levin-Luby-89] and [Hastad-90]

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

- OWF \implies PRG: [Impagliazzo-Levin-Luby-89] and [Hastad-90]
- More Efficient Constructions: [Vadhan-Zheng-12]

3

・ロン ・四 ・ ・ ヨン ・ ヨン

- OWF \implies PRG: [Impagliazzo-Levin-Luby-89] and [Hastad-90]
- More Efficient Constructions: [Vadhan-Zheng-12]
- Computational analogues of Entropy

・ロト ・回ト ・ヨト ・ヨト

- OWF \implies PRG: [Impagliazzo-Levin-Luby-89] and [Hastad-90]
- More Efficient Constructions: [Vadhan-Zheng-12]
- Computational analogues of Entropy
- Non-cryptographic PRGs and Derandomization: [Nisan-Wigderson-88]

・ロト ・回ト ・ヨト ・ヨト

Going beyond Poly Stretch

æ

・ロト ・四ト ・ヨト ・ヨト

• PRGs can only generate polynomially long pseudorandom strings

æ

・ロン ・四と ・日と ・日と

- PRGs can only generate polynomially long pseudorandom strings
- <u>Think</u>: How to efficiently generate exponentially long pseudorandom strings?

- PRGs can only generate polynomially long pseudorandom strings
- <u>Think</u>: How to efficiently generate exponentially long pseudorandom strings?

Idea: Functions that index exponentially long pseudorandom strings

ヘロト 人間ト 人団ト 人口ト

• $\mathcal{F}_n :=$ set of all functions that map inputs from $\{0,1\}^n$ to $\{0,1\}^{\ell(n)}$

・ロト ・四ト ・ヨト ・ヨト 三田

\$\mathcal{F}_n := set of all functions that map inputs from \$\{0,1\}^n\$ to \$\{0,1\}^{\ll(n)}\$
\$\frac{\Think:}{\Think:}\$ What is \$|\mathcal{F}_n|\$?

◆□> ◆□> ◆臣> ◆臣> ─ 臣

- \$\mathcal{F}_n := set of all functions that map inputs from \$\{0,1\}^n\$ to \$\{0,1\}^{\ell(n)}\$
 \$\text{Think: What is \$|\mathcal{F}_n|\$?
- A random function is $f \stackrel{s}{\leftarrow} \mathcal{F}_n$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ → ヨ → のへで

• Oracle O maps queries $q \in \{0,1\}^n$ to $\{0,1\}^{\ell(n)}$

3

・ロト ・四ト ・ヨト ・ヨト

- Oracle O maps queries $q \in \{0, 1\}^n$ to $\{0, 1\}^{\ell(n)}$
- Oracle algorithm \mathcal{A} with "oracle access" to O is denoted as \mathcal{A}^O

æ

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

- Oracle O maps queries $q \in \{0,1\}^n$ to $\{0,1\}^{\ell(n)}$
- Oracle algorithm \mathcal{A} with "oracle access" to O is denoted as \mathcal{A}^O
- Time measure: Querying and receiving an answer from ${\cal O}$ takes unit time

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

- Oracle O maps queries $q \in \{0,1\}^n$ to $\{0,1\}^{\ell(n)}$
- Oracle algorithm \mathcal{A} with "oracle access" to O is denoted as \mathcal{A}^O
- Time measure: Querying and receiving an answer from ${\cal O}$ takes unit time
- Think: Definition of PPT and n.u. PPT for oracle algorithms

ロト (日) (日) (日)

Definition (Oracle Ensemble)

A sequence $\{O_n\}_{n\in\mathbb{N}}$ is an oracle ensemble if $\forall n\in\mathbb{N}, O_n$ is a distribution over the set of all functions $f: \{0,1\}^n \to \{0,1\}^{\ell(n)}$

・ロン ・四と ・ヨン ・ヨン

Definition (Oracle Ensemble)

A sequence $\{O_n\}_{n\in\mathbb{N}}$ is an oracle ensemble if $\forall n\in\mathbb{N}, O_n$ is a distribution over the set of all functions $f: \{0,1\}^n \to \{0,1\}^{\ell(n)}$

Definition (Oracle Indistinguishability)

Oracle ensembles $\{O_n^0\}$ and $\{O_n^1\}$ are computationally indistinguishable if for every n.u. PPT oracle machine D, there exists a negligible function $\mu(\cdot)$ s.t.:

$$\Pr\left[f \leftarrow O_n^0 : D^f\left(1^n\right) = 1\right] - \Pr\left[f \leftarrow O_n^1 : D^f\left(1^n\right) = 1\right] \middle| \leqslant \mu(n)$$

・ロト ・回ト ・ヨト ・ヨト 三日

Pseudorandom Functions

<u>Intuition</u>: An efficiently computable function that "looks like" a random function

3

・ロト ・四ト ・ヨト ・ヨト

Pseudorandom Functions

<u>Intuition</u>: An efficiently computable function that "looks like" a random function

Definition (Pseudorandom Functions)

A family of functions $\{f_s : \{0,1\}^n \to \{0,1\}^{\ell(n)}\}$ is a pseudorandom function (PRF) if:

《日》 《圖》 《臣》 《臣》

Pseudorandom Functions

<u>Intuition</u>: An efficiently computable function that "looks like" a random function

Definition (Pseudorandom Functions)

A family of functions $\{f_s: \{0,1\}^n \to \{0,1\}^{\ell(n)}\}$ is a pseudorandom function (PRF) if:

• Efficient Computation: There exists a PPT F s.t. F(s, x) efficiently computes the function $f_s(x)$

(ロ) (四) (ヨ) (ヨ) (ヨ)

<u>Intuition</u>: An efficiently computable function that "looks like" a random function

Definition (Pseudorandom Functions)

A family of functions $\{f_s: \{0,1\}^n \to \{0,1\}^{\ell(n)}\}\$ is a pseudorandom function (PRF) if:

- Efficient Computation: There exists a PPT F s.t. F(s, x) efficiently computes the function $f_s(x)$
- Indistinguishability:

$$\left\{s \stackrel{\$}{\leftarrow} \{0,1\}^n : f_s\right\} \approx \left\{f \stackrel{\$}{\leftarrow} \mathcal{F}_n : f\right\}$$

(ロ) (四) (ヨ) (ヨ) (ヨ)

<u>Intuition</u>: An efficiently computable function that "looks like" a random function

Definition (Pseudorandom Functions)

A family of functions $\{f_s: \{0,1\}^n \to \{0,1\}^{\ell(n)}\}$ is a pseudorandom function (PRF) if:

- Efficient Computation: There exists a PPT F s.t. F(s, x) efficiently computes the function $f_s(x)$
- Indistinguishability:

$$\left\{s \stackrel{\$}{\leftarrow} \{0,1\}^n : f_s\right\} \approx \left\{f \stackrel{\$}{\leftarrow} \mathcal{F}_n : f\right\}$$

Typically, $\ell(n)$ will be equal to n

<ロ> (四) (四) (三) (三) (三)

<u>Goal:</u> Construct a PRF $\{f_s: \{0,1\}^n \to \{0,1\}^n\}$ from a length-doubling PRG $G: \{0,1\}^n \to \{0,1\}^{2n}$

《曰》 《圖》 《臣》 《臣》 三臣

<u>Goal</u>: Construct a PRF $\{f_s: \{0,1\}^n \to \{0,1\}^n\}$ from a length-doubling PRG $G: \{0,1\}^n \to \{0,1\}^{2n}$

Construction of f_s :

• $G(s) = G_0(s), G_1(s)$ where $G_0, G_1 : \{0, 1\}^n \to \{0, 1\}^n$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ → ヨ → のへで

<u>Goal</u>: Construct a PRF $\{f_s : \{0,1\}^n \to \{0,1\}^n\}$ from a length-doubling PRG $G : \{0,1\}^n \to \{0,1\}^{2n}$

Construction of f_s :

- $G(s) = G_0(s), G_1(s)$ where $G_0, G_1 : \{0, 1\}^n \to \{0, 1\}^n$
- $f_s(x) \coloneqq G_{x_n} \left(G_{x_{n-1}} \left(\cdots G_{x_1} \left(s \right) \cdots \right) \right)$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

<u>Goal:</u> Construct a PRF $\{f_s: \{0,1\}^n \to \{0,1\}^n\}$ from a length-doubling PRG $G: \{0,1\}^n \to \{0,1\}^{2n}$

Construction of f_s :

- $G(s) = G_0(s), G_1(s)$ where $G_0, G_1 : \{0, 1\}^n \to \{0, 1\}^n$
- $f_s(x) \coloneqq G_{x_n} \left(G_{x_{n-1}} \left(\cdots G_{x_1} \left(s \right) \cdots \right) \right)$

• <u>Think</u>: Proof?

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ●目 ● のへで

• PRFs from number-theoretic assumptions [Naor-Reingold97], lattices [Banerjee-Peikert-Rosen12]

æ

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

- PRFs from number-theoretic assumptions [Naor-Reingold97], lattices [Banerjee-Peikert-Rosen12]
- PRFs with "Punctured" Keys [Sahai-Waters14]

イロト イヨト イヨト イヨト

- PRFs from number-theoretic assumptions [Naor-Reingold97], lattices [Banerjee-Peikert-Rosen12]
- PRFs with "Punctured" Keys [Sahai-Waters14]
- Constrained PRFs [Boneh-Waters13,Kiayias-Papadopoulos-Triandopoulos-Zacharias13,Boyle-Goldwasser-Ivan14]

イロト イヨト イヨト イヨト

- PRFs from number-theoretic assumptions [Naor-Reingold97], lattices [Banerjee-Peikert-Rosen12]
- PRFs with "Punctured" Keys [Sahai-Waters14]
- Constrained PRFs [Boneh-Waters13,Kiayias-Papadopoulos-Triandopoulos-Zacharias13,Boyle-Goldwasser-Ivan14]
- Related-key Security [Bellare-Cash10]: Should evaluation of $f_s(x)$ help predict $f_{s'}(x)$?

・ロン ・四 ・ ・ ヨン ・ ヨン

- PRFs from number-theoretic assumptions [Naor-Reingold97], lattices [Banerjee-Peikert-Rosen12]
- PRFs with "Punctured" Keys [Sahai-Waters14]
- Constrained PRFs [Boneh-Waters13,Kiayias-Papadopoulos-Triandopoulos-Zacharias13,Boyle-Goldwasser-Ivan14]
- Related-key Security [Bellare-Cash10]: Should evaluation of $f_s(x)$ help predict $f_{s'}(x)$?
- Key-homomorphic PRFs [Boneh-Lewi-Montgomery-Raghunathan13]: Given $f_s(x)$ and $f_{s'}(x)$, compute $f_{g(s,s')}(x)$

<ロ> (四) (四) (三) (三) (三) (三)