Lecture 4: Pseudorandomness

Last Lecture

- Example of Reduction

Last Lecture

- Example of Reduction
- Hardness of Factoring \Longrightarrow Weak One-Way Function

Last Lecture

- Example of Reduction
- Hardness of Factoring \Longrightarrow Weak One-Way Function
- (Intuition) Weak One-Way Func. \Longrightarrow Strong One-Way Func.

Last Lecture

- Example of Reduction
- Hardness of Factoring \Longrightarrow Weak One-Way Function
- (Intuition) Weak One-Way Func. \Longrightarrow Strong One-Way Func.
- Ensemble of Probability Distribution

Last Lecture

- Example of Reduction
- Hardness of Factoring \Longrightarrow Weak One-Way Function
- (Intuition) Weak One-Way Func. \Longrightarrow Strong One-Way Func.
- Ensemble of Probability Distribution
- $\left\{X_{n}\right\}_{n \in \mathbb{N}}: \forall n \in \mathbb{N}, X_{n}$ is a probability distribution over $\{0,1\}^{\ell(n)}$ for some polynomial $\ell(\cdot)$

Last Lecture

- Example of Reduction
- Hardness of Factoring \Longrightarrow Weak One-Way Function
- (Intuition) Weak One-Way Func. \Longrightarrow Strong One-Way Func.
- Ensemble of Probability Distribution
- $\left\{X_{n}\right\}_{n \in \mathbb{N}}: \forall n \in \mathbb{N}, X_{n}$ is a probability distribution over $\{0,1\}^{\ell(n)}$ for some polynomial $\ell(\cdot)$
- Computational Indistinguishability

Last Lecture

- Example of Reduction
- Hardness of Factoring \Longrightarrow Weak One-Way Function
- (Intuition) Weak One-Way Func. \Longrightarrow Strong One-Way Func.
- Ensemble of Probability Distribution
- $\left\{X_{n}\right\}_{n \in \mathbb{N}}: \forall n \in \mathbb{N}, X_{n}$ is a probability distribution over $\{0,1\}^{\ell(n)}$ for some polynomial $\ell(\cdot)$
- Computational Indistinguishability
- Any n.u. PPT D can distinguish $\left\{X_{n}\right\}$ from $\left\{Y_{n}\right\}$ with only negligible probability

Last Lecture

- Example of Reduction
- Hardness of Factoring \Longrightarrow Weak One-Way Function
- (Intuition) Weak One-Way Func. \Longrightarrow Strong One-Way Func.
- Ensemble of Probability Distribution
- $\left\{X_{n}\right\}_{n \in \mathbb{N}}: \forall n \in \mathbb{N}, X_{n}$ is a probability distribution over $\{0,1\}^{\ell(n)}$ for some polynomial $\ell(\cdot)$
- Computational Indistinguishability
- Any n.u. PPT D can distinguish $\left\{X_{n}\right\}$ from $\left\{Y_{n}\right\}$ with only negligible probability
- Property 1: Closure under Efficient Operations

Last Lecture

- Example of Reduction
- Hardness of Factoring \Longrightarrow Weak One-Way Function
- (Intuition) Weak One-Way Func. \Longrightarrow Strong One-Way Func.
- Ensemble of Probability Distribution
- $\left\{X_{n}\right\}_{n \in \mathbb{N}}: \forall n \in \mathbb{N}, X_{n}$ is a probability distribution over $\{0,1\}^{\ell(n)}$ for some polynomial $\ell(\cdot)$
- Computational Indistinguishability
- Any n.u. PPT D can distinguish $\left\{X_{n}\right\}$ from $\left\{Y_{n}\right\}$ with only negligible probability
- Property 1: Closure under Efficient Operations
- Efficient processing cannot help distinguish computationally indistinguishable distributions

Last Lecture

- Example of Reduction
- Hardness of Factoring \Longrightarrow Weak One-Way Function
- (Intuition) Weak One-Way Func. \Longrightarrow Strong One-Way Func.
- Ensemble of Probability Distribution
- $\left\{X_{n}\right\}_{n \in \mathbb{N}}: \forall n \in \mathbb{N}, X_{n}$ is a probability distribution over $\{0,1\}^{\ell(n)}$ for some polynomial $\ell(\cdot)$
- Computational Indistinguishability
- Any n.u. PPT D can distinguish $\left\{X_{n}\right\}$ from $\left\{Y_{n}\right\}$ with only negligible probability
- Property 1: Closure under Efficient Operations
- Efficient processing cannot help distinguish computationally indistinguishable distributions
- Property 2: Transitivity (aka, the "Hybrid Lemma")

Last Lecture

- Example of Reduction
- Hardness of Factoring \Longrightarrow Weak One-Way Function
- (Intuition) Weak One-Way Func. \Longrightarrow Strong One-Way Func.
- Ensemble of Probability Distribution
- $\left\{X_{n}\right\}_{n \in \mathbb{N}}: \forall n \in \mathbb{N}, X_{n}$ is a probability distribution over $\{0,1\}^{\ell(n)}$ for some polynomial $\ell(\cdot)$
- Computational Indistinguishability
- Any n.u. PPT D can distinguish $\left\{X_{n}\right\}$ from $\left\{Y_{n}\right\}$ with only negligible probability
- Property 1: Closure under Efficient Operations
- Efficient processing cannot help distinguish computationally indistinguishable distributions
- Property 2: Transitivity (aka, the "Hybrid Lemma")
- If first and last hybrids are comp. distinguishable, then at least a pair of consecutive hybrids are comp. distinguishable

Distinguishing vs Prediction

Distinguishing vs Prediction

Definition (Prediction Advantage)

$$
\max _{\mathcal{A}} \operatorname{Pr}\left[b \stackrel{\$}{\leftarrow}\{0,1\}, t \leftarrow X_{n}^{b}: \mathcal{A}(t)=b\right]-\frac{1}{2}
$$

Distinguishing vs Prediction

Definition (Prediction Advantage)

$$
\max _{\mathcal{A}} \operatorname{Pr}\left[b \stackrel{\&}{\leftarrow}\{0,1\}, t \leftarrow X_{n}^{b}: \mathcal{A}(t)=b\right]-\frac{1}{2}
$$

- Comp. Indistinguishability \Longleftrightarrow Negl. Prediction Advantage

Distinguishing vs Prediction

Definition (Prediction Advantage)

$$
\max _{\mathcal{A}} \operatorname{Pr}\left[b \stackrel{\S}{\leftarrow}\{0,1\}, t \leftarrow X_{n}^{b}: \mathcal{A}(t)=b\right]-\frac{1}{2}
$$

- Comp. Indistinguishability \Longleftrightarrow Negl. Prediction Advantage
- Think: Comp. Indistinguishability \Rightarrow Negl. Prediction Advantage?

Distinguishing vs Prediction

Definition (Prediction Advantage)

$$
\max _{\mathcal{A}} \operatorname{Pr}\left[b \stackrel{\$}{\leftarrow}\{0,1\}, t \leftarrow X_{n}^{b}: \mathcal{A}(t)=b\right]-\frac{1}{2}
$$

- Comp. Indistinguishability \Longleftrightarrow Negl. Prediction Advantage
- Think: Comp. Indistinguishability \Rightarrow Negl. Prediction Advantage?
- Think: Comp. Indistinguishability \Leftarrow Negl. Prediction Advantage?

Distinguishing vs Prediction (contd.)

Lemma (Prediction Lemma)

Let $\left\{X_{n}^{0}\right\}$ and $\left\{X_{n}^{1}\right\}$ be ensembles of probability distributions. Let D be a n.u. PPT that $\varepsilon(\cdot)$-distinguishes $\left\{X_{n}^{0}\right\}$ and $\left\{X_{n}^{1}\right\}$ for infinitely many $n \in \mathbb{N}$. Then, \exists n.u. PPT \mathcal{A} s.t.

$$
\operatorname{Pr}\left[b \stackrel{\Phi}{\leftarrow}\{0,1\}, t \leftarrow X_{n}^{b}: \mathcal{A}(t)=b\right]-\frac{1}{2} \geqslant \frac{\varepsilon(n)}{2}
$$

for infinitely many $n \in \mathbb{N}$.

Distinguishing vs Prediction (contd.)

Lemma (Prediction Lemma)

Let $\left\{X_{n}^{0}\right\}$ and $\left\{X_{n}^{1}\right\}$ be ensembles of probability distributions. Let D be a n.u. PPT that $\varepsilon(\cdot)$-distinguishes $\left\{X_{n}^{0}\right\}$ and $\left\{X_{n}^{1}\right\}$ for infinitely many $n \in \mathbb{N}$. Then, \exists n.u. PPT \mathcal{A} s.t.

$$
\operatorname{Pr}\left[b \stackrel{\S}{\leftarrow}\{0,1\}, t \leftarrow X_{n}^{b}: \mathcal{A}(t)=b\right]-\frac{1}{2} \geqslant \frac{\varepsilon(n)}{2}
$$

for infinitely many $n \in \mathbb{N}$.

- Think: Proof?

Pseudorandom Distributions

Pseudorandom Distributions

- How to test that a string is "random-looking?"

Pseudorandom Distributions

- How to test that a string is "random-looking?"
- Roughly same number of 0 s and 1 s

Pseudorandom Distributions

- How to test that a string is "random-looking?"
- Roughly same number of 0 s and 1 s
- Roughly same number of 00 s and 11 s

Pseudorandom Distributions

- How to test that a string is "random-looking?"
- Roughly same number of 0 s and 1 s
- Roughly same number of 00 s and 11 s
- Given any prefix, hard to guess next bit

Pseudorandom Distributions

- How to test that a string is "random-looking?"
- Roughly same number of 0 s and 1 s
- Roughly same number of 00s and 11s
- Given any prefix, hard to guess next bit
- Given any prefix, hard to guess next sequence

Pseudorandom Distributions

- How to test that a string is "random-looking?"
- Roughly same number of 0 s and 1 s
- Roughly same number of 00s and 11s
- Given any prefix, hard to guess next bit
- Given any prefix, hard to guess next sequence

Pseudorandom Distributions

- How to test that a string is "random-looking?"
- Roughly same number of 0 s and 1 s
- Roughly same number of 00s and 11s
- Given any prefix, hard to guess next bit
- Given any prefix, hard to guess next sequence
- ...

Want: Strings that pass all efficient tests

Pseudorandom Distributions (contd.)

- Uniform Distribution

Pseudorandom Distributions (contd.)

- Uniform Distribution
- $U_{\ell(n)}$ denotes uniform distribution over $\{0,1\}^{\ell(n)}$

Pseudorandom Distributions (contd.)

- Uniform Distribution
- $U_{\ell(n)}$ denotes uniform distribution over $\{0,1\}^{\ell(n)}$
- Pseudorandomness

Pseudorandom Distributions (contd.)

- Uniform Distribution
- $U_{\ell(n)}$ denotes uniform distribution over $\{0,1\}^{\ell(n)}$
- Pseudorandomness
- Intuition: A distribution is pseudorandom if it "looks like" a uniform distribution to any efficient test

Pseudorandom Distributions (contd.)

- Uniform Distribution
- $U_{\ell(n)}$ denotes uniform distribution over $\{0,1\}^{\ell(n)}$
- Pseudorandomness
- Intuition: A distribution is pseudorandom if it "looks like" a uniform distribution to any efficient test

Pseudorandom Distributions (contd.)

- Uniform Distribution
- $U_{\ell(n)}$ denotes uniform distribution over $\{0,1\}^{\ell(n)}$
- Pseudorandomness
- Intuition: A distribution is pseudorandom if it "looks like" a uniform distribution to any efficient test

Definition (Pseudorandom Ensembles)

An ensemble $\left\{X_{n}\right\}$, where X_{n} is a distribution over $\{0,1\}^{\ell(n)}$, is said to be pseudorandom if:

$$
\left\{X_{n}\right\} \approx\left\{U_{\ell(n)}\right\}
$$

Pseudorandom Distributions (contd.)

- Uniform Distribution
- $U_{\ell(n)}$ denotes uniform distribution over $\{0,1\}^{\ell(n)}$
- Pseudorandomness
- Intuition: A distribution is pseudorandom if it "looks like" a uniform distribution to any efficient test

Definition (Pseudorandom Ensembles)

An ensemble $\left\{X_{n}\right\}$, where X_{n} is a distribution over $\{0,1\}^{\ell(n)}$, is said to be pseudorandom if:

$$
\left\{X_{n}\right\} \approx\left\{U_{\ell(n)}\right\}
$$

- Think: How to show indistinguishability against all efficient tests?

Next-bit Unpredictability

Next-bit Unpredictability

Definition (Next-bit Unpredictability)

An ensemble of distributions $\left\{X_{n}\right\}$ over $\{0,1\}^{\ell(n)}$ is next-bit unpredictable if, for all $0 \leqslant i<\ell(n)$ and n.u. PPT \mathcal{A}, \exists negligible function $\nu(\cdot)$ s.t.:

$$
\operatorname{Pr}\left[t=t_{1} \ldots t_{\ell(n)} \leftarrow X_{n}: \mathcal{A}\left(t_{1} \ldots t_{i}\right)=t_{i+1}\right] \leqslant \frac{1}{2}+\nu(n)
$$

Next-bit Unpredictability

Definition (Next-bit Unpredictability)

An ensemble of distributions $\left\{X_{n}\right\}$ over $\{0,1\}^{\ell(n)}$ is next-bit unpredictable if, for all $0 \leqslant i<\ell(n)$ and n.u. PPT \mathcal{A}, \exists negligible function $\nu(\cdot)$ s.t.:

$$
\operatorname{Pr}\left[t=t_{1} \ldots t_{\ell(n)} \leftarrow X_{n}: \mathcal{A}\left(t_{1} \ldots t_{i}\right)=t_{i+1}\right] \leqslant \frac{1}{2}+\nu(n)
$$

Theorem (Completeness of Next-bit Test)

If $\left\{X_{n}\right\}$ is next-bit unpredictable then $\left\{X_{n}\right\}$ is pseudorandom.

Next-bit Unpredictability \Longrightarrow Pseudorandomness

$$
H_{n}^{(i)}:=\left\{x \leftarrow X_{n}, u \leftarrow U_{n}: x_{1} \ldots x_{i} u_{i+1} \ldots u_{\ell(n)}\right\}
$$

Next-bit Unpredictability \Longrightarrow Pseudorandomness

$$
H_{n}^{(i)}:=\left\{x \leftarrow X_{n}, u \leftarrow U_{n}: x_{1} \ldots x_{i} u_{i+1} \ldots u_{\ell(n)}\right\}
$$

- First Hybrid: H_{n}^{0} is the uniform distribution $U_{\ell(n)}$

Next-bit Unpredictability \Longrightarrow Pseudorandomness

$$
H_{n}^{(i)}:=\left\{x \leftarrow X_{n}, u \leftarrow U_{n}: x_{1} \ldots x_{i} u_{i+1} \ldots u_{\ell(n)}\right\}
$$

- First Hybrid: H_{n}^{0} is the uniform distribution $U_{\ell(n)}$
- Last Hybrid: $H_{n}^{\ell(n)}$ is the distribution X_{n}

Next-bit Unpredictability \Longrightarrow Pseudorandomness

$$
H_{n}^{(i)}:=\left\{x \leftarrow X_{n}, u \leftarrow U_{n}: x_{1} \ldots x_{i} u_{i+1} \ldots u_{\ell(n)}\right\}
$$

- First Hybrid: H_{n}^{0} is the uniform distribution $U_{\ell(n)}$
- Last Hybrid: $H_{n}^{\ell(n)}$ is the distribution X_{n}
- Suppose $H_{n}^{(\ell(n))}$ is next-bit unpredictable but not pseudorandom

Next-bit Unpredictability \Longrightarrow Pseudorandomness

$$
H_{n}^{(i)}:=\left\{x \leftarrow X_{n}, u \leftarrow U_{n}: x_{1} \ldots x_{i} u_{i+1} \ldots u_{\ell(n)}\right\}
$$

- First Hybrid: H_{n}^{0} is the uniform distribution $U_{\ell(n)}$
- Last Hybrid: $H_{n}^{\ell(n)}$ is the distribution X_{n}
- Suppose $H_{n}^{(\ell(n))}$ is next-bit unpredictable but not pseudorandom
- $H_{n}^{(0)} \not \approx H_{n}^{(\ell(n))} \Longrightarrow \exists i \in[\ell(n)-1]$ s.t. $H_{n}^{(i)} \nRightarrow H_{n}^{(i+1)}$

Next-bit Unpredictability \Longrightarrow Pseudorandomness

$$
H_{n}^{(i)}:=\left\{x \leftarrow X_{n}, u \leftarrow U_{n}: x_{1} \ldots x_{i} u_{i+1} \ldots u_{\ell(n)}\right\}
$$

- First Hybrid: H_{n}^{0} is the uniform distribution $U_{\ell(n)}$
- Last Hybrid: $H_{n}^{\ell(n)}$ is the distribution X_{n}
- Suppose $H_{n}^{(\ell(n))}$ is next-bit unpredictable but not pseudorandom
- $H_{n}^{(0)} \not \approx H_{n}^{(\ell(n))} \Longrightarrow \exists i \in[\ell(n)-1]$ s.t. $H_{n}^{(i)} \nRightarrow H_{n}^{(i+1)}$
- Now, next bit unpredictability is violated

Pseudorandom Generators

Pseudorandom Generators

Definition (Pseudorandom Generator)

A pseudorandom generator (PRG) $G:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell(n)}$ is an efficiently computable function, where $\ell(\cdot)$ is a suitable polynomial s.t. $\ell(n)>n$, such that:

$$
\left\{G\left(U_{n}\right)\right\} \approx\left\{U_{\ell(n)}\right\}
$$

Pseudorandom Generators

Definition (Pseudorandom Generator)

A pseudorandom generator (PRG) $G:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell(n)}$ is an efficiently computable function, where $\ell(\cdot)$ is a suitable polynomial s.t. $\ell(n)>n$, such that:

$$
\left\{G\left(U_{n}\right)\right\} \approx\left\{U_{\ell(n)}\right\}
$$

(1) Stretches n random bits into $\ell(n)$ pseudorandom bits

Pseudorandom Generators

Definition (Pseudorandom Generator)

A pseudorandom generator (PRG) $G:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell(n)}$ is an efficiently computable function, where $\ell(\cdot)$ is a suitable polynomial s.t. $\ell(n)>n$, such that:

$$
\left\{G\left(U_{n}\right)\right\} \approx\left\{U_{\ell(n)}\right\}
$$

(1) Stretches n random bits into $\ell(n)$ pseudorandom bits
(2) Impossible unconditionally (need comp. indistinguishability)

Pseudorandom Generators

Definition (Pseudorandom Generator)

A pseudorandom generator (PRG) $G:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell(n)}$ is an efficiently computable function, where $\ell(\cdot)$ is a suitable polynomial s.t. $\ell(n)>n$, such that:

$$
\left\{G\left(U_{n}\right)\right\} \approx\left\{U_{\ell(n)}\right\}
$$

(1) Stretches n random bits into $\ell(n)$ pseudorandom bits
(2) Impossible unconditionally (need comp. indistinguishability)
(3) How to construct PRGs?

Hardcore Predicate

Hardcore Predicate

- Let f be a one-way function

Hardcore Predicate

- Let f be a one-way function
- Intuition: $h(\cdot)$ is hardcore for f if $h(x)$ is hard to predict even if $f(x)$ is given to the adversary

Hardcore Predicate

- Let f be a one-way function
- Intuition: $h(\cdot)$ is hardcore for f if $h(x)$ is hard to predict even if $f(x)$ is given to the adversary

Definition (Hardcore Predicate)

The predicate $h:\{0,1\}^{n} \rightarrow\{0,1\}$ is hardcore for $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ if \forall n.u. PPT adversary \mathcal{A}, \exists negligible function $\mu(\cdot)$ such that:

$$
\operatorname{Pr}\left[x \stackrel{\$}{\leftarrow}\{0,1\}^{n}: \mathcal{A}\left(1^{n}, f(x)\right)=h(x)\right] \leqslant \frac{1}{2}+\mu(n)
$$

Hardcore Predicate

- Let f be a one-way function
- Intuition: $h(\cdot)$ is hardcore for f if $h(x)$ is hard to predict even if $f(x)$ is given to the adversary

Definition (Hardcore Predicate)

The predicate $h:\{0,1\}^{n} \rightarrow\{0,1\}$ is hardcore for $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ if \forall n.u. PPT adversary \mathcal{A}, \exists negligible function $\mu(\cdot)$ such that:

$$
\operatorname{Pr}\left[x \stackrel{\$}{\leftarrow}\{0,1\}^{n}: \mathcal{A}\left(1^{n}, f(x)\right)=h(x)\right] \leqslant \frac{1}{2}+\mu(n)
$$

- Hardcore Predicate suffices to construct PRG

Construction Outline: PRG from OWF

- Step 1: OWF (OWP) \Longrightarrow Hardcore Predicate for OWF (OWP)

Construction Outline: PRG from OWF

- Step 1: OWF (OWP) \Longrightarrow Hardcore Predicate for OWF (OWP)
- Step 2: Hardcore Predicate for OWF (OWP) \Longrightarrow One-bit stretch $\overline{\text { PRG }}$

Construction Outline: PRG from OWF

- Step 1: OWF (OWP) \Longrightarrow Hardcore Predicate for OWF (OWP)
- Step 2: Hardcore Predicate for OWF (OWP) \Longrightarrow One-bit stretch PRG
- Step3: One-bit stretch PRG \Longrightarrow Poly-stretch PRG

Construction Outline: PRG from OWF

- Step 1: OWF (OWP) \Longrightarrow Hardcore Predicate for OWF (OWP)
- Step 2: Hardcore Predicate for OWF (OWP) \Longrightarrow One-bit stretch PRG
- Step3: One-bit stretch PRG \Longrightarrow Poly-stretch PRG
- Today: Step 2 for OWP and Step 3

Construction Outline: PRG from OWF

- Step 1: OWF (OWP) \Longrightarrow Hardcore Predicate for OWF (OWP)
- Step 2: Hardcore Predicate for OWF (OWP) \Longrightarrow One-bit stretch $\overline{\text { PRG }}$
- Step3: One-bit stretch PRG \Longrightarrow Poly-stretch PRG
- Today: Step 2 for OWP and Step 3
- Step 1 in next lecture

Hardcore Predicate for OWP \Longrightarrow One-bit stretch PRG

- Construction: $G(s)=f(s) \| h(s)$

Hardcore Predicate for OWP \Longrightarrow One-bit stretch PRG

- Construction: $G(s)=f(s) \| h(s)$
- Think: Proof?

One-bit stretch PRG \Longrightarrow Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times
Construction of $G_{\text {poly }}:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell(n)}$:

One-bit stretch PRG \Longrightarrow Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times
Construction of $G_{\text {poly }}:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell(n)}$:

- Let $G_{1}:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a one-bit stretch PRG

One-bit stretch PRG \Longrightarrow Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times
Construction of $G_{\text {poly }}:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell(n)}$:

- Let $G_{1}:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a one-bit stretch PRG
- $X_{0} \leftarrow s$

One-bit stretch PRG \Longrightarrow Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times
Construction of $G_{\text {poly }}:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell(n)}$:

- Let $G_{1}:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a one-bit stretch PRG
- $X_{0} \leftarrow s$
- $X_{1} \| b_{1} \leftarrow G_{1}\left(X_{0}\right)$

One-bit stretch PRG \Longrightarrow Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times
Construction of $G_{\text {poly }}:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell(n)}$:

- Let $G_{1}:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a one-bit stretch PRG
- $X_{0} \leftarrow s$
- $X_{1} \| b_{1} \leftarrow G_{1}\left(X_{0}\right)$
- $X_{2} \| b_{2} \leftarrow G_{1}\left(X_{1}\right)$

One-bit stretch PRG \Longrightarrow Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times
Construction of $G_{\text {poly }}:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell(n)}$:

- Let $G_{1}:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a one-bit stretch PRG
- $X_{0} \leftarrow s$
- $X_{1} \| b_{1} \leftarrow G_{1}\left(X_{0}\right)$
- $X_{2} \| b_{2} \leftarrow G_{1}\left(X_{1}\right)$
- $X_{3} \| b_{3} \leftarrow G_{1}\left(X_{2}\right)$

One-bit stretch PRG \Longrightarrow Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times
Construction of $G_{\text {poly }}:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell(n)}$:

- Let $G_{1}:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a one-bit stretch PRG
- $X_{0} \leftarrow s$
- $X_{1} \| b_{1} \leftarrow G_{1}\left(X_{0}\right)$
- $X_{2} \| b_{2} \leftarrow G_{1}\left(X_{1}\right)$
- $X_{3} \| b_{3} \leftarrow G_{1}\left(X_{2}\right)$
- $X_{i} \| b_{i} \leftarrow G_{1}\left(X_{i-1}\right)$

One-bit stretch PRG \Longrightarrow Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times
Construction of $G_{\text {poly }}:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell(n)}$:

- Let $G_{1}:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a one-bit stretch PRG
- $X_{0} \leftarrow s$
- $X_{1} \| b_{1} \leftarrow G_{1}\left(X_{0}\right)$
- $X_{2} \| b_{2} \leftarrow G_{1}\left(X_{1}\right)$
- $X_{3} \| b_{3} \leftarrow G_{1}\left(X_{2}\right)$
- $X_{i} \| b_{i} \leftarrow G_{1}\left(X_{i-1}\right)$
- $G_{p o l y}(s):=b_{1} \ldots b_{\ell(n)}$

One-bit stretch PRG \Longrightarrow Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times
Construction of $G_{\text {poly }}:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell(n)}$:

- Let $G_{1}:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a one-bit stretch PRG
- $X_{0} \leftarrow s$
- $X_{1} \| b_{1} \leftarrow G_{1}\left(X_{0}\right)$
- $X_{2} \| b_{2} \leftarrow G_{1}\left(X_{1}\right)$
- $X_{3} \| b_{3} \leftarrow G_{1}\left(X_{2}\right)$
- $X_{i} \| b_{i} \leftarrow G_{1}\left(X_{i-1}\right)$
- $G_{p o l y}(s):=b_{1} \ldots b_{\ell(n)}$
- Proof?

