Lecture 4: Pseudorandomness J

Last Lecture

e Example of Reduction

Last Lecture

e Example of Reduction
e Hardness of Factoring = Weak One-Way Function

Last Lecture

e Example of Reduction

e Hardness of Factoring = Weak One-Way Function
o (Intuition) Weak One-Way Func. = Strong One-Way Func.

Last Lecture

e Example of Reduction

e Hardness of Factoring = Weak One-Way Function
o (Intuition) Weak One-Way Func. = Strong One-Way Func.

e Ensemble of Probability Distribution

Last Lecture

e Example of Reduction

e Hardness of Factoring = Weak One-Way Function
o (Intuition) Weak One-Way Func. = Strong One-Way Func.

e Ensemble of Probability Distribution
o {X,} nen: Vn €N, X,, is a probability distribution over {0, 1} for
some polynomial £(-)

Last Lecture

e Example of Reduction

e Hardness of Factoring = Weak One-Way Function
o (Intuition) Weak One-Way Func. = Strong One-Way Func.

e Ensemble of Probability Distribution
o {X,} nen: Vn €N, X,, is a probability distribution over {0, 1} for
some polynomial £(-)

e Computational Indistinguishability

Last Lecture

e Example of Reduction

e Hardness of Factoring = Weak One-Way Function
o (Intuition) Weak One-Way Func. = Strong One-Way Func.

e Ensemble of Probability Distribution
o {X,}nen: Vn e N, X, is a probability distribution over {0, 1}2(") for
some polynomial £(-)
e Computational Indistinguishability

o Any n.u. PPT D can distinguish {X,,} from {Y;,} with only
negligible probability

Last Lecture

Example of Reduction
e Hardness of Factoring = Weak One-Way Function
o (Intuition) Weak One-Way Func. = Strong One-Way Func.
Ensemble of Probability Distribution
o {X,}nen: Vn e N, X, is a probability distribution over {0, 1}2(") for
some polynomial £(-)

Computational Indistinguishability

o Any n.u. PPT D can distinguish {X,,} from {Y;,} with only
negligible probability

Property 1: Closure under Efficient Operations

Last Lecture

Example of Reduction
e Hardness of Factoring = Weak One-Way Function
o (Intuition) Weak One-Way Func. = Strong One-Way Func.
Ensemble of Probability Distribution
o {X,}nen: Vn e N, X, is a probability distribution over {0, 1}2(") for
some polynomial £(-)

Computational Indistinguishability

o Any n.u. PPT D can distinguish {X,,} from {Y;,} with only
negligible probability

Property 1: Closure under Efficient Operations

o Efficient processing cannot help distinguish computationally
indistinguishable distributions

Last Lecture

Example of Reduction
e Hardness of Factoring = Weak One-Way Function
o (Intuition) Weak One-Way Func. = Strong One-Way Func.
Ensemble of Probability Distribution
o {X,}nen: Vn e N, X, is a probability distribution over {0, 1}2(") for
some polynomial £(-)

Computational Indistinguishability

o Any n.u. PPT D can distinguish {X,,} from {Y;,} with only
negligible probability

Property 1: Closure under Efficient Operations

o Efficient processing cannot help distinguish computationally
indistinguishable distributions

Property 2: Transitivity (aka, the “Hybrid Lemma”)

Last Lecture

Example of Reduction
e Hardness of Factoring = Weak One-Way Function
o (Intuition) Weak One-Way Func. = Strong One-Way Func.
Ensemble of Probability Distribution
o {X,}nen: Vn e N, X, is a probability distribution over {0, 1}2(") for
some polynomial £(-)

Computational Indistinguishability

o Any n.u. PPT D can distinguish {X,,} from {Y;,} with only
negligible probability

Property 1: Closure under Efficient Operations

o Efficient processing cannot help distinguish computationally
indistinguishable distributions

Property 2: Transitivity (aka, the “Hybrid Lemma”)

o If first and last hybrids are comp. distinguishable, then at least a
pair of consecutive hybrids are comp. distinguishable

Distinguishing vs Prediction

Distinguishing vs Prediction

Definition (Prediction Advantage)

max Pr[b E40,1),t — X2 A(t) =b] — =

Distinguishing vs Prediction

Definition (Prediction Advantage)

1
max Pr[b 40,1}t — X°: A(t) = b] — 5

e Comp. Indistinguishability <= Negl. Prediction Advantage

Distinguishing vs Prediction

Definition (Prediction Advantage)

1
max Pr[b 40,1}t — X°: A(t) = b] — 5

e Comp. Indistinguishability <= Negl. Prediction Advantage
o Think: Comp. Indistinguishability = Negl. Prediction Advantage?

Distinguishing vs Prediction

Definition (Prediction Advantage)

1
max Pr[b 40,1}t — X°: A(t) = b] — 5

e Comp. Indistinguishability <= Negl. Prediction Advantage

o Think: Comp. Indistinguishability = Negl. Prediction Advantage?
e Think: Comp. Indistinguishability <= Negl. Prediction Advantage?

Distinguishing vs Prediction (contd.)

Lemma (Prediction Lemma)

Let {X2} and {X!} be ensembles of probability distributions. Let D be a
n.u. PPT that (-)-distinguishes {X02} and {X} for infinitely many
n € N. Then, 3 n.u. PPT A s.t.

=

Pr[b << {0,1},t — X5 : A(t) =b]—l> 5(2—”)

[\

for infinitely many n € N.

Distinguishing vs Prediction (contd.)

Lemma (Prediction Lemma)

Let {X2} and {X!} be ensembles of probability distributions. Let D be a
n.u. PPT that (-)-distinguishes {X02} and {X} for infinitely many
n € N. Then, 3 n.u. PPT A s.t.

=

[\

Pr[b << {0,1},t — X5 : A(t) =b]—l> 5(2—”)

for infinitely many n € N.

o Think: Proof?

Pseudorandom Distributions

Pseudorandom Distributions

e How to test that a string is “random-looking?”

Pseudorandom Distributions

e How to test that a string is “random-looking?”
e Roughly same number of Os and 1s

Pseudorandom Distributions

e How to test that a string is “random-looking?”

e Roughly same number of Os and 1s
e Roughly same number of 00s and 11s

Pseudorandom Distributions

e How to test that a string is “random-looking?”

e Roughly same number of Os and 1s
e Roughly same number of 00s and 11s
e Given any prefix, hard to guess next bit

Pseudorandom Distributions

e How to test that a string is “random-looking?”
Roughly same number of Os and 1s

Roughly same number of 00s and 11s

Given any prefix, hard to guess next bit
Given any prefix, hard to guess next sequence

Pseudorandom Distributions

e How to test that a string is “random-looking?”
Roughly same number of Os and 1s

Roughly same number of 00s and 11s

Given any prefix, hard to guess next bit
Given any prefix, hard to guess next sequence

Pseudorandom Distributions

e How to test that a string is “random-looking?”
Roughly same number of Os and 1s

Roughly same number of 00s and 11s

Given any prefix, hard to guess next bit
Given any prefix, hard to guess next sequence

Want: Strings that pass all efficient tests

Pseudorandom Distributions (contd.)

o Uniform Distribution

Pseudorandom Distributions (contd.)

@ Uniform Distribution
o Uy(n) denotes uniform distribution over {0, 1}

Pseudorandom Distributions (contd.)

@ Uniform Distribution
o Uy(n) denotes uniform distribution over {0, 1}

o Pseudorandomness

Pseudorandom Distributions (contd.)

@ Uniform Distribution
o Uy(n) denotes uniform distribution over {0, 1}
o Pseudorandomness

o Intuition: A distribution is pseudorandom if it “looks like” a
uniform distribution to any efficient test

Pseudorandom Distributions (contd.)

@ Uniform Distribution
o Uy(n) denotes uniform distribution over {0, 1}
o Pseudorandomness

o Intuition: A distribution is pseudorandom if it “looks like” a
uniform distribution to any efficient test

Pseudorandom Distributions (contd.)

@ Uniform Distribution
o Uy(n) denotes uniform distribution over {0, 1}
o Pseudorandomness

o Intuition: A distribution is pseudorandom if it “looks like” a
uniform distribution to any efficient test

Definition (Pseudorandom Ensembles)

An ensemble {X,,}, where X,, is a distribution over {0, 1}*™) is said to
be pseudorandom if:

{Xn} ~ {Ugm)}

Pseudorandom Distributions (contd.)

@ Uniform Distribution
o Uy(n) denotes uniform distribution over {0, 1}
o Pseudorandomness

o Intuition: A distribution is pseudorandom if it “looks like” a
uniform distribution to any efficient test

Definition (Pseudorandom Ensembles)

An ensemble {X,,}, where X,, is a distribution over {0, 1}*™) is said to
be pseudorandom if:

{Xn} ~ {Ugm)}

@ Think: How to show indistinguishability against all efficient tests?

Next-bit Unpredictability

Next-bit Unpredictability

Definition (Next-bit Unpredictability)

An ensemble of distributions {X,} over {0,1}*™ is next-bit
unpredictable if, for all 0 < ¢ < ¢(n) and n.u. PPT A, 3 negligible
function v(-) s.t.:

1
Pl‘[t =11.. .tg(n) — X A(tl .. ti) = tz‘+1] < § * I/(n)

Next-bit Unpredictability

Definition (Next-bit Unpredictability)

An ensemble of distributions {X,} over {0,1}*™ is next-bit
unpredictable if, for all 0 < ¢ < ¢(n) and n.u. PPT A, 3 negligible
function v(-) s.t.:

1
Pl‘[t =11.. -té(n) — X .A(tl .. ti) = tz‘+1] < 5 * I/(n)

Theorem (Completeness of Next-bit Test)

If {X,,} is next-bit unpredictable then {X,} is pseudorandom.

Next-bit Unpredictability = Pseudorandomness

HS) = {:L‘ <« Xn,u <« Un: TyLiUj41 - - Ug(n)}

Next-bit Unpredictability = Pseudorandomness

HS) = {:L‘ <« Xn,u <« Un: TyLiUj41 - - ug(n)}

o First Hybrid: H? is the uniform distribution Us(n)

Next-bit Unpredictability = Pseudorandomness

HS) = {:L‘ <« Xn,u <« Un: TyLiUj41 - - ug(n)}

o First Hybrid: H? is the uniform distribution Us(n)
o Last Hybrid: H.™ is the distribution X,

Next-bit Unpredictability = Pseudorandomness

HS) = {:L‘ <« Xn,u <« Un: L1 .. -LiUj4q - - - ug(n)}
o First Hybrid: H? is the uniform distribution Us(n)
o Last Hybrid: H.™ is the distribution X,

@ Suppose Hff(")) is next-bit unpredictable but not pseudorandom

Next-bit Unpredictability = Pseudorandomness

HS) = {:L‘ <« Xn,u <« Un: TyLiUj41 - - ug(n)}

First Hybrid: H? is the uniform distribution Us(n)

Last Hybrid: Hﬁ(n) is the distribution X,

Suppose Hff(")) is next-bit unpredictable but not pseudorandom

7Y % g™ — Jie[tn) - 1] st. HY »x Y

Next-bit Unpredictability = Pseudorandomness

HS) = {:L‘ <« Xn,u <« Un: TyLiUj41 - - ug(n)}

First Hybrid: H? is the uniform distribution Us(n)

Last Hybrid: Hﬁ(n) is the distribution X,

Suppose Hff(")) is next-bit unpredictable but not pseudorandom
7Y % g™ — Jie[tn) - 1] st. HY »x Y

e Now, next bit unpredictability is violated

Pseudorandom Generators

Pseudorandom Generators

Definition (Pseudorandom Generator)

A pseudorandom generator (PRG) G: {0,1}" — {0,1}*™ is an
efficiently computable function, where £(-) is a suitable polynomial s.t.
¢(n) > n, such that:

{G(Un)} = {Ug(ny}

Pseudorandom Generators

Definition (Pseudorandom Generator)

A pseudorandom generator (PRG) G: {0,1}" — {0,1}*™ is an
efficiently computable function, where £(-) is a suitable polynomial s.t.
¢(n) > n, such that:

{G(Un)} = {Ug(ny}

@ Stretches n random bits into £(n) pseudorandom bits

Pseudorandom Generators

Definition (Pseudorandom Generator)

A pseudorandom generator (PRG) G: {0,1}" — {0,1}*™ is an
efficiently computable function, where £(-) is a suitable polynomial s.t.
¢(n) > n, such that:

{G(U)} ~ Uy}

@ Stretches n random bits into £(n) pseudorandom bits

@ Impossible unconditionally (need comp. indistinguishability)

Pseudorandom Generators

Definition (Pseudorandom Generator)

A pseudorandom generator (PRG) G: {0,1}" — {0,1}*™ is an
efficiently computable function, where £(-) is a suitable polynomial s.t.
¢(n) > n, such that:

{G(U)} ~ Uy}

@ Stretches n random bits into £(n) pseudorandom bits
@ Impossible unconditionally (need comp. indistinguishability)
@ How to construct PRGs?

Hardcore Predicate

Hardcore Predicate

e Let f be a one-way function

Hardcore Predicate

e Let f be a one-way function

e Intuition: A(-) is hardcore for f if h(z) is hard to predict even if
f(zx) is given to the adversary

Hardcore Predicate

e Let f be a one-way function

e Intuition: A(-) is hardcore for f if h(z) is hard to predict even if
f(zx) is given to the adversary

Definition (Hardcore Predicate)

The predicate h: {0,1}" — {0,1} is hardcore for f : {0,1}" — {0,1}™ if
V n.u. PPT adversary A, 3 negligible function p(-) such that:

Pr [ac S 10,13 AQ™, f(z)) = h(m)] <

Hardcore Predicate

e Let f be a one-way function

e Intuition: A(-) is hardcore for f if h(z) is hard to predict even if
f(z) is given to the adversary

Definition (Hardcore Predicate)

The predicate h: {0,1}" — {0,1} is hardcore for f : {0,1}" — {0,1}™ if
V n.u. PPT adversary A, 3 negligible function p(-) such that:

Pr [ac S 10,13 AQ™, f(z)) = h(x)] <

e Hardcore Predicate suffices to construct PRG

Construction Outline: PRG from OWF

e Step 1: OWF (OWP) = Hardcore Predicate for OWF (OWP)

Construction Outline: PRG from OWF

e Step 1: OWF (OWP) = Hardcore Predicate for OWF (OWP)

e Step 2: Hardcore Predicate for OWF (OWP) = One-bit stretch
PRG

Construction Outline: PRG from OWF

e Step 1: OWF (OWP) = Hardcore Predicate for OWF (OWP)

e Step 2: Hardcore Predicate for OWF (OWP) = One-bit stretch
PRG

@ Step3: One-bit stretch PRG == Poly-stretch PRG

Construction Outline: PRG from OWF

e Step 1: OWF (OWP) = Hardcore Predicate for OWF (OWP)

e Step 2: Hardcore Predicate for OWF (OWP) = One-bit stretch
PRG

@ Step3: One-bit stretch PRG == Poly-stretch PRG
e Today: Step 2 for OWP and Step 3

Construction Outline: PRG from OWF

e Step 1: OWF (OWP) = Hardcore Predicate for OWF (OWP)

e Step 2: Hardcore Predicate for OWF (OWP) = One-bit stretch
PRG

@ Step3: One-bit stretch PRG == Poly-stretch PRG
e Today: Step 2 for OWP and Step 3

@ Step 1 in next lecture

Hardcore Predicate for OWP = One-bit stretch PRG

e Construction: G(s) = f(s) || h(s)

Hardcore Predicate for OWP = One-bit stretch PRG

e Construction: G(s) = f(s) || h(s)
e Think: Proof?

One-bit stretch PRG = Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times

Construction of Gpeyy : {0,1}" — {0, 1}5(?1):

One-bit stretch PRG = Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times

Construction of Gpeyy : {0,1}" — {0, 1}
o Let Gp: {0,1}" — {0,1}"*! be a one-bit stretch PRG

One-bit stretch PRG = Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times

Construction of Gpeyy : {0,1}" — {0, 1}
o Let Gp: {0,1}" — {0,1}"*! be a one-bit stretch PRG
] XO <« S

One-bit stretch PRG = Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times

Construction of Gy : {0,1}" — {0, 1}5(”);
o Let Gp: {0,1}" — {0,1}"*! be a one-bit stretch PRG
@ Xy« s
o Xi[b1 < G1(Xo)

One-bit stretch PRG = Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times

Construction of Gy : {0,1}" — {0, 1}5(”);
o Let Gp: {0,1}" — {0,1}"*! be a one-bit stretch PRG
@ Xy« s
o Xi[b1 < G1(Xo)
° Xo|bg < G1(X1)

One-bit stretch PRG = Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times

Construction of Gy : {0,1}" — {0, 1}5(”);
o Let Gp: {0,1}" — {0,1}"*! be a one-bit stretch PRG
o Xg«s
o Xi[b1 < G1(Xo)
° Xo|bg < G1(X1)
o X3|b3 < G1(X2)

One-bit stretch PRG = Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times

Construction of Gy : {0,1}" — {0, 1}5(”);
o Let Gp: {0,1}" — {0,1}"*! be a one-bit stretch PRG
o Xg«s

X1[br < G1(Xo)

Xab2 < G1(X1)

X3|b3 < G1(X2)

Xi|b; < G1(Xi-1)

One-bit stretch PRG = Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times

Construction of Gy : {0,1}" — {0, 1}5(”);
o Let Gp: {0,1}" — {0,1}"*! be a one-bit stretch PRG
o Xg«s

X1[br < G1(Xo)

Xab2 < G1(X1)

X3|b3 < G1(X2)

Xi|b; < G1(Xi-1)

Gpoly(8) 1= b1 ... by()

One-bit stretch PRG = Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times

Construction of Gy : {0,1}" — {0, 1}5(”);
o Let Gp: {0,1}" — {0,1}"*! be a one-bit stretch PRG
o Xg«s

X1[br < G1(Xo)

Xab2 < G1(X1)

X3|b3 < G1(X2)

Xi|b; < G1(Xi-1)

Gpoly(8) 1= b1 ... by()

@ Proof?

