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Last Lecture

Example of Reduction

Hardness of Factoring ùñ Weak One-Way Function
(Intuition) Weak One-Way Func. ùñ Strong One-Way Func.

Ensemble of Probability Distribution

tXnunPN: @n P N, Xn is a probability distribution over t0, 1u`pnq for
some polynomial `p¨q

Computational Indistinguishability

Any n.u. PPT D can distinguish tXnu from tYnu with only
negligible probability

Property 1: Closure under Efficient Operations

Efficient processing cannot help distinguish computationally
indistinguishable distributions

Property 2: Transitivity (aka, the “Hybrid Lemma”)

If first and last hybrids are comp. distinguishable, then at least a
pair of consecutive hybrids are comp. distinguishable
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Distinguishing vs Prediction

Definition (Prediction Advantage)

max
A

Prrb
$
Ð t0, 1u, tÐ Xb

n : Aptq “ bs ´
1

2

Comp. Indistinguishability ðñ Negl. Prediction Advantage

Think: Comp. Indistinguishability ñ Negl. Prediction Advantage?
Think: Comp. Indistinguishability ð Negl. Prediction Advantage?
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Distinguishing vs Prediction (contd.)

Lemma (Prediction Lemma)
Let tX0

nu and tX1
nu be ensembles of probability distributions. Let D be a

n.u. PPT that εp¨q-distinguishes tX0
nu and tX1

nu for infinitely many
n P N. Then, D n.u. PPT A s.t.

Prrb
$
Ð t0, 1u, tÐ Xb

n : Aptq “ bs ´
1

2
ě
εpnq

2

for infinitely many n P N.

Think: Proof?
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Pseudorandom Distributions

How to test that a string is “random-looking?”

Roughly same number of 0s and 1s
Roughly same number of 00s and 11s
Given any prefix, hard to guess next bit
Given any prefix, hard to guess next sequence
. . .

Want: Strings that pass all efficient tests
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Pseudorandom Distributions (contd.)

Uniform Distribution

U`pnq denotes uniform distribution over t0, 1u`pnq

Pseudorandomness

Intuition: A distribution is pseudorandom if it “looks like” a
uniform distribution to any efficient test

Definition (Pseudorandom Ensembles)

An ensemble tXnu, where Xn is a distribution over t0, 1u`pnq, is said to
be pseudorandom if:

tXnu « tU`pnqu

Think: How to show indistinguishability against all efficient tests?
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Next-bit Unpredictability

Definition (Next-bit Unpredictability)

An ensemble of distributions tXnu over t0, 1u`pnq is next-bit
unpredictable if, for all 0 ď i ă `pnq and n.u. PPT A, D negligible
function νp¨q s.t.:

Prrt “ t1 . . . t`pnq Ð Xn : Apt1 . . . tiq “ ti`1s ď
1

2
` νpnq

Theorem (Completeness of Next-bit Test)
If tXnu is next-bit unpredictable then tXnu is pseudorandom.
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Next-bit Unpredictability ùñ Pseudorandomness

Hpiqn :“
 

xÐ Xn, uÐ Un : x1 . . . xiui`1 . . . u`pnq
(

First Hybrid: H0
n is the uniform distribution U`pnq

Last Hybrid: H`pnq
n is the distribution Xn

Suppose Hp`pnqqn is next-bit unpredictable but not pseudorandom

H
p0q
n ff H

p`pnqq
n ùñ D i P r`pnq ´ 1s s.t. Hpiqn ff H

pi`1q
n

Now, next bit unpredictability is violated
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Pseudorandom Generators

Definition (Pseudorandom Generator)

A pseudorandom generator (PRG) G : t0, 1un Ñ t0, 1u`pnq is an
efficiently computable function, where `p¨q is a suitable polynomial s.t.
`pnq ą n, such that:

tGpUnqu « tU`pnqu

1 Stretches n random bits into `pnq pseudorandom bits
2 Impossible unconditionally (need comp. indistinguishability)
3 How to construct PRGs?
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Hardcore Predicate

Let f be a one-way function
Intuition: hp¨q is hardcore for f if hpxq is hard to predict even if
fpxq is given to the adversary

Definition (Hardcore Predicate)
The predicate h : t0, 1un Ñ t0, 1u is hardcore for f : t0, 1un Ñ t0, 1um if
@ n.u. PPT adversary A, D negligible function µp¨q such that:

Pr
”

x
$
Ð t0, 1un : Ap1n, fpxqq “ hpxq

ı

ď
1

2
` µpnq

Hardcore Predicate suffices to construct PRG
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Construction Outline: PRG from OWF

Step 1: OWF (OWP) ùñ Hardcore Predicate for OWF (OWP)

Step 2: Hardcore Predicate for OWF (OWP) ùñ One-bit stretch
PRG
Step3: One-bit stretch PRG ùñ Poly-stretch PRG
Today: Step 2 for OWP and Step 3
Step 1 in next lecture
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Hardcore Predicate for OWP ùñ One-bit stretch PRG

Construction: Gpsq “ fpsq } hpsq

Think: Proof?
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One-bit stretch PRG ùñ Poly-stretch PRG

Intuition: Iterate the one-bit stretch PRG poly times

Construction of Gpoly : t0, 1un Ñ t0, 1u`pnq:

Let G1 : t0, 1u
n Ñ t0, 1un`1 be a one-bit stretch PRG

X0 Ð s

X1}b1 Ð G1pX0q

X2}b2 Ð G1pX1q

X3}b3 Ð G1pX2q

Xi}bi Ð G1pXi´1q

Gpolypsq :“ b1 . . . b`pnq

Proof?
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