Lecture 4: Pseudorandomness

(中) (종) (종) (종) (종) (종)

• Example of Reduction

æ

- Example of Reduction
 - Hardness of Factoring \implies Weak One-Way Function

- Example of Reduction
 - Hardness of Factoring \implies Weak One-Way Function
 - (Intuition) Weak One-Way Func. \implies Strong One-Way Func.

3

・ロト ・四ト ・ヨト ・ヨト

- Example of Reduction
 - Hardness of Factoring \implies Weak One-Way Function
 - (Intuition) Weak One-Way Func. \implies Strong One-Way Func.
- Ensemble of Probability Distribution

3

- Example of Reduction
 - Hardness of Factoring \implies Weak One-Way Function
 - (Intuition) Weak One-Way Func. \implies Strong One-Way Func.
- Ensemble of Probability Distribution
 - $\{X_n\}_{n\in\mathbb{N}}$: $\forall n\in\mathbb{N}, X_n$ is a probability distribution over $\{0,1\}^{\ell(n)}$ for some polynomial $\ell(\cdot)$

・ロト ・回ト ・ヨト ・ヨト 三日

- Example of Reduction
 - Hardness of Factoring \implies Weak One-Way Function
 - (Intuition) Weak One-Way Func. \implies Strong One-Way Func.
- Ensemble of Probability Distribution
 - $\{X_n\}_{n\in\mathbb{N}}$: $\forall n\in\mathbb{N}, X_n$ is a probability distribution over $\{0,1\}^{\ell(n)}$ for some polynomial $\ell(\cdot)$
- Computational Indistinguishability

・ロト ・回ト ・ヨト ・ヨト 三日

- Example of Reduction
 - Hardness of Factoring \implies Weak One-Way Function
 - (Intuition) Weak One-Way Func. \implies Strong One-Way Func.
- Ensemble of Probability Distribution
 - $\{X_n\}_{n\in\mathbb{N}}$: $\forall n\in\mathbb{N}, X_n$ is a probability distribution over $\{0,1\}^{\ell(n)}$ for some polynomial $\ell(\cdot)$
- Computational Indistinguishability
 - Any n.u. PPT D can distinguish $\{X_n\}$ from $\{Y_n\}$ with only negligible probability

(日) (四) (三) (三) (三)

- Example of Reduction
 - Hardness of Factoring \implies Weak One-Way Function
 - (Intuition) Weak One-Way Func. \implies Strong One-Way Func.
- Ensemble of Probability Distribution
 - $\{X_n\}_{n\in\mathbb{N}}$: $\forall n\in\mathbb{N}, X_n$ is a probability distribution over $\{0,1\}^{\ell(n)}$ for some polynomial $\ell(\cdot)$
- Computational Indistinguishability
 - Any n.u. PPT D can distinguish $\{X_n\}$ from $\{Y_n\}$ with only negligible probability
- Property 1: Closure under Efficient Operations

・ロト ・同ト ・ヨト ・ヨト ・ヨー つへの

- Example of Reduction
 - Hardness of Factoring \implies Weak One-Way Function
 - (Intuition) Weak One-Way Func. \implies Strong One-Way Func.
- Ensemble of Probability Distribution
 - $\{X_n\}_{n\in\mathbb{N}}$: $\forall n\in\mathbb{N}, X_n$ is a probability distribution over $\{0,1\}^{\ell(n)}$ for some polynomial $\ell(\cdot)$
- Computational Indistinguishability
 - Any n.u. PPT D can distinguish $\{X_n\}$ from $\{Y_n\}$ with only negligible probability
- Property 1: Closure under Efficient Operations
 - Efficient processing cannot help distinguish computationally indistinguishable distributions

◆ロト ◆母 ト ◆ 臣 ト ◆ 臣 ・ のへの

- Example of Reduction
 - Hardness of Factoring \implies Weak One-Way Function
 - (Intuition) Weak One-Way Func. \implies Strong One-Way Func.
- Ensemble of Probability Distribution
 - $\{X_n\}_{n\in\mathbb{N}}$: $\forall n\in\mathbb{N}, X_n$ is a probability distribution over $\{0,1\}^{\ell(n)}$ for some polynomial $\ell(\cdot)$
- Computational Indistinguishability
 - Any n.u. PPT D can distinguish $\{X_n\}$ from $\{Y_n\}$ with only negligible probability
- Property 1: Closure under Efficient Operations
 - Efficient processing cannot help distinguish computationally indistinguishable distributions
- Property 2: Transitivity (aka, the "Hybrid Lemma")

・ロト ・同ト ・ヨト ・ヨト ・ヨー つへの

- Example of Reduction
 - Hardness of Factoring \implies Weak One-Way Function
 - (Intuition) Weak One-Way Func. \implies Strong One-Way Func.
- Ensemble of Probability Distribution
 - $\{X_n\}_{n\in\mathbb{N}}$: $\forall n\in\mathbb{N}, X_n$ is a probability distribution over $\{0,1\}^{\ell(n)}$ for some polynomial $\ell(\cdot)$
- Computational Indistinguishability
 - Any n.u. PPT D can distinguish $\{X_n\}$ from $\{Y_n\}$ with only negligible probability
- Property 1: Closure under Efficient Operations
 - Efficient processing cannot help distinguish computationally indistinguishable distributions
- Property 2: Transitivity (aka, the "Hybrid Lemma")
 - If first and last hybrids are comp. distinguishable, then at least a pair of consecutive hybrids are comp. distinguishable

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

Distinguishing vs Prediction

æ

・ロト ・四ト ・ヨト ・ヨト

$$\max_{\mathcal{A}} \Pr[b \xleftarrow{\hspace{0.1cm}\$} \{0,1\}, t \leftarrow X_n^b : \mathcal{A}(t) = b] - \frac{1}{2}$$

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

$$\max_{\mathcal{A}} \Pr[b \stackrel{s}{\leftarrow} \{0, 1\}, t \leftarrow X_n^b : \mathcal{A}(t) = b] - \frac{1}{2}$$

 \bullet Comp. Indistinguishability \Longleftrightarrow Negl. Prediction Advantage

Э

・ロト ・日下・ ・日下・

$$\max_{\mathcal{A}} \Pr[b \stackrel{s}{\leftarrow} \{0, 1\}, t \leftarrow X_n^b : \mathcal{A}(t) = b] - \frac{1}{2}$$

- \bullet Comp. Indistinguishability \Longleftrightarrow Negl. Prediction Advantage
 - <u>Think</u>: Comp. Indistinguishability \Rightarrow Negl. Prediction Advantage?

・ロト ・日下・ ・日下・

$$\max_{\mathcal{A}} \Pr[b \xleftarrow{\hspace{0.1cm}\$} \{0,1\}, t \leftarrow X_n^b : \mathcal{A}(t) = b] - \frac{1}{2}$$

- \bullet Comp. Indistinguishability \Longleftrightarrow Negl. Prediction Advantage
 - <u>Think</u>: Comp. Indistinguishability \Rightarrow Negl. Prediction Advantage?
 - <u>Think</u>: Comp. Indistinguishability \leftarrow Negl. Prediction Advantage?

・ロン ・四と ・日と ・日と

Lemma (Prediction Lemma)

Let $\{X_n^0\}$ and $\{X_n^1\}$ be ensembles of probability distributions. Let D be a n.u. PPT that $\varepsilon(\cdot)$ -distinguishes $\{X_n^0\}$ and $\{X_n^1\}$ for infinitely many $n \in \mathbb{N}$. Then, $\exists n.u. PPT \mathcal{A} s.t.$

$$\Pr[b \xleftarrow{\hspace{0.1cm}\$} \{0,1\}, t \leftarrow X_n^b : \mathcal{A}(t) = b] - \frac{1}{2} \ge \frac{\varepsilon(n)}{2}$$

for infinitely many $n \in \mathbb{N}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Lemma (Prediction Lemma)

Let $\{X_n^0\}$ and $\{X_n^1\}$ be ensembles of probability distributions. Let D be a n.u. PPT that $\varepsilon(\cdot)$ -distinguishes $\{X_n^0\}$ and $\{X_n^1\}$ for infinitely many $n \in \mathbb{N}$. Then, $\exists n.u. PPT \mathcal{A} s.t.$

$$\Pr[b \xleftarrow{\hspace{0.1cm}\$} \{0,1\}, t \leftarrow X_n^b : \mathcal{A}(t) = b] - \frac{1}{2} \ge \frac{\varepsilon(n)}{2}$$

for infinitely many $n \in \mathbb{N}$.

• <u>Think</u>: Proof?

Pseudorandom Distributions

(日) (四) (注) (注) (注) (三)

ъ

・ロト ・回ト ・ヨト ・ヨト

- How to test that a string is "random-looking?"
 - Roughly same number of 0s and 1s

ъ

イロト イヨト イヨト イヨト

- How to test that a string is "random-looking?"
 - Roughly same number of 0s and 1s
 - Roughly same number of 00s and 11s

Э

・ロン ・四と ・日と ・日と

- Roughly same number of 0s and 1s
- Roughly same number of 00s and 11s
- Given any prefix, hard to guess next bit

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Roughly same number of 0s and 1s
- Roughly same number of 00s and 11s
- Given any prefix, hard to guess next bit
- Given any prefix, hard to guess next sequence

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

- Roughly same number of 0s and 1s
- Roughly same number of 00s and 11s
- Given any prefix, hard to guess next bit
- Given any prefix, hard to guess next sequence
- ...

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Roughly same number of 0s and 1s
- Roughly same number of 00s and 11s
- Given any prefix, hard to guess next bit
- Given any prefix, hard to guess next sequence

• . . .

Want: Strings that pass all efficient tests

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

• Uniform Distribution

æ

・ロト ・回ト ・ヨト ・ヨト

- Uniform Distribution
 - $U_{\ell(n)}$ denotes uniform distribution over $\{0,1\}^{\ell(n)}$

- Uniform Distribution
 - $U_{\ell(n)}$ denotes uniform distribution over $\{0,1\}^{\ell(n)}$
- Pseudorandomness

・ロト ・回ト ・ヨト ・ヨト 三日

- Uniform Distribution
 - $U_{\ell(n)}$ denotes uniform distribution over $\{0,1\}^{\ell(n)}$
- Pseudorandomness
 - <u>Intuition</u>: A distribution is pseudorandom if it "looks like" a uniform distribution to any efficient test

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

- Uniform Distribution
 - $U_{\ell(n)}$ denotes uniform distribution over $\{0,1\}^{\ell(n)}$
- Pseudorandomness
 - <u>Intuition</u>: A distribution is pseudorandom if it "looks like" a uniform distribution to any efficient test

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

- Uniform Distribution
 - $U_{\ell(n)}$ denotes uniform distribution over $\{0,1\}^{\ell(n)}$
- Pseudorandomness
 - <u>Intuition</u>: A distribution is pseudorandom if it "looks like" a uniform distribution to any efficient test

Definition (Pseudorandom Ensembles)

An ensemble $\{X_n\}$, where X_n is a distribution over $\{0, 1\}^{\ell(n)}$, is said to be pseudorandom if:

 $\{X_n\} \approx \{U_{\ell(n)}\}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

- Uniform Distribution
 - $U_{\ell(n)}$ denotes uniform distribution over $\{0,1\}^{\ell(n)}$
- Pseudorandomness
 - <u>Intuition</u>: A distribution is pseudorandom if it "looks like" a uniform distribution to any efficient test

Definition (Pseudorandom Ensembles)

An ensemble $\{X_n\}$, where X_n is a distribution over $\{0, 1\}^{\ell(n)}$, is said to be pseudorandom if:

 $\{X_n\} \approx \{U_{\ell(n)}\}$

• <u>Think</u>: How to show indistinguishability against *all* efficient tests?

◆ロト ◆団 ▶ ◆豆 ▶ ◆豆 ▶ ◆ 団 ▶ ◆ ○ ◆

Next-bit Unpredictability

æ

・ロト ・四ト ・ヨト ・ヨト

Definition (Next-bit Unpredictability)

An ensemble of distributions $\{X_n\}$ over $\{0,1\}^{\ell(n)}$ is next-bit unpredictable if, for all $0 \leq i < \ell(n)$ and n.u. PPT \mathcal{A} , \exists negligible function $\nu(\cdot)$ s.t.:

$$\Pr[t = t_1 \dots t_{\ell(n)} \leftarrow X_n \colon \mathcal{A}(t_1 \dots t_i) = t_{i+1}] \leq \frac{1}{2} + \nu(n)$$

・ロン ・四と ・日と ・日と

Definition (Next-bit Unpredictability)

An ensemble of distributions $\{X_n\}$ over $\{0,1\}^{\ell(n)}$ is next-bit unpredictable if, for all $0 \leq i < \ell(n)$ and n.u. PPT \mathcal{A} , \exists negligible function $\nu(\cdot)$ s.t.:

$$\Pr[t = t_1 \dots t_{\ell(n)} \leftarrow X_n \colon \mathcal{A}(t_1 \dots t_i) = t_{i+1}] \leqslant \frac{1}{2} + \nu(n)$$

Theorem (Completeness of Next-bit Test)

If $\{X_n\}$ is next-bit unpredictable then $\{X_n\}$ is pseudorandom.

・ロト ・回ト ・ヨト ・ヨト 三日

$$H_n^{(i)} := \left\{ x \leftarrow X_n, u \leftarrow U_n \colon x_1 \dots x_i u_{i+1} \dots u_{\ell(n)} \right\}$$

(日) (四) (注) (注) (注) (三)

$$H_n^{(i)} := \left\{ x \leftarrow X_n, u \leftarrow U_n \colon x_1 \dots x_i u_{i+1} \dots u_{\ell(n)} \right\}$$

• First Hybrid: H_n^0 is the uniform distribution $U_{\ell(n)}$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

$$H_n^{(i)} := \left\{ x \leftarrow X_n, u \leftarrow U_n \colon x_1 \dots x_i u_{i+1} \dots u_{\ell(n)} \right\}$$

First Hybrid: H_n⁰ is the uniform distribution U_{l(n)}
Last Hybrid: H_n^{l(n)} is the distribution X_n

・ロト ・回ト ・ヨト ・ヨト ・ヨ

$$H_n^{(i)} := \left\{ x \leftarrow X_n, u \leftarrow U_n \colon x_1 \dots x_i u_{i+1} \dots u_{\ell(n)} \right\}$$

• First Hybrid: H_n^0 is the uniform distribution $U_{\ell(n)}$

- Last Hybrid: $H_n^{\ell(n)}$ is the distribution X_n
- Suppose $H_n^{(\ell(n))}$ is next-bit unpredictable but not pseudorandom

・ロト ・回ト ・ヨト ・ヨト ・ りゃぐ

$$H_n^{(i)} := \left\{ x \leftarrow X_n, u \leftarrow U_n \colon x_1 \dots x_i u_{i+1} \dots u_{\ell(n)} \right\}$$

• First Hybrid: H_n^0 is the uniform distribution $U_{\ell(n)}$

- Last Hybrid: $H_n^{\ell(n)}$ is the distribution X_n
- Suppose H_n^{(ℓ(n))} is next-bit unpredictable but not pseudorandom
 H_n⁽⁰⁾ ≈ H_n^{(ℓ(n))} ⇒ ∃ i ∈ [ℓ(n) 1] s.t. H_n⁽ⁱ⁾ ≈ H_n⁽ⁱ⁺¹⁾

$$H_n^{(i)} := \left\{ x \leftarrow X_n, u \leftarrow U_n \colon x_1 \dots x_i u_{i+1} \dots u_{\ell(n)} \right\}$$

• First Hybrid: H_n^0 is the uniform distribution $U_{\ell(n)}$

- Last Hybrid: $H_n^{\ell(n)}$ is the distribution X_n
- Suppose $H_n^{(\ell(n))}$ is next-bit unpredictable but not pseudorandom
- $H_n^{(0)} \not\approx H_n^{(\ell(n))} \implies \exists i \in [\ell(n) 1] \text{ s.t. } H_n^{(i)} \not\approx H_n^{(i+1)}$
- Now, next bit unpredictability is violated

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ . Ξ . のQC

Pseudorandom Generators

(日) (四) (注) (注) (注) (三)

A pseudorandom generator (PRG) $G: \{0,1\}^n \to \{0,1\}^{\ell(n)}$ is an efficiently computable function, where $\ell(\cdot)$ is a suitable polynomial s.t. $\ell(n) > n$, such that:

 $\{G(U_n)\} \approx \{U_{\ell(n)}\}$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

A pseudorandom generator (PRG) $G: \{0,1\}^n \to \{0,1\}^{\ell(n)}$ is an efficiently computable function, where $\ell(\cdot)$ is a suitable polynomial s.t. $\ell(n) > n$, such that:

 $\{G(U_n)\} \approx \{U_{\ell(n)}\}$

③ Stretches n random bits into $\ell(n)$ pseudorandom bits

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

A pseudorandom generator (PRG) $G: \{0,1\}^n \to \{0,1\}^{\ell(n)}$ is an efficiently computable function, where $\ell(\cdot)$ is a suitable polynomial s.t. $\ell(n) > n$, such that:

 $\{G(U_n)\} \approx \{U_{\ell(n)}\}$

- **9** Stretches n random bits into $\ell(n)$ pseudorandom bits
- **2** Impossible unconditionally (need comp. indistinguishability)

《曰》 《圖》 《臣》 《臣》 三臣

A pseudorandom generator (PRG) $G: \{0,1\}^n \to \{0,1\}^{\ell(n)}$ is an efficiently computable function, where $\ell(\cdot)$ is a suitable polynomial s.t. $\ell(n) > n$, such that:

 $\{G(U_n)\} \approx \{U_{\ell(n)}\}$

- **()** Stretches n random bits into $\ell(n)$ pseudorandom bits
- ² Impossible unconditionally (need comp. indistinguishability)
- How to construct PRGs?

《曰》 《圖》 《臣》 《臣》 三臣

Lecture 4: Pseudorandomness

• Let f be a one-way function

æ

- Let f be a one-way function
- Intuition: $h(\cdot)$ is hardcore for f if h(x) is hard to predict even if f(x) is given to the adversary

3

・ロト ・四ト ・ヨト ・ヨト

- Let f be a one-way function
- <u>Intuition</u>: $h(\cdot)$ is hardcore for f if h(x) is hard to predict even if f(x) is given to the adversary

Definition (Hardcore Predicate)

The predicate $h: \{0,1\}^n \to \{0,1\}$ is hardcore for $f: \{0,1\}^n \to \{0,1\}^m$ if \forall n.u. PPT adversary \mathcal{A}, \exists negligible function $\mu(\cdot)$ such that:

$$\Pr\left[x \xleftarrow{\hspace{0.1em}}{}^{\$} \{0,1\}^n \colon \mathcal{A}(1^n,f(x)) = h(x)\right] \leqslant \frac{1}{2} + \mu(n)$$

・ロト ・回ト ・ヨト ・ヨト 三日

- Let f be a one-way function
- <u>Intuition</u>: $h(\cdot)$ is hardcore for f if h(x) is hard to predict even if f(x) is given to the adversary

Definition (Hardcore Predicate)

The predicate $h: \{0,1\}^n \to \{0,1\}$ is hardcore for $f: \{0,1\}^n \to \{0,1\}^m$ if \forall n.u. PPT adversary \mathcal{A}, \exists negligible function $\mu(\cdot)$ such that:

$$\Pr\left[x \xleftarrow{\hspace{0.1em}}{}^{\$} \{0,1\}^n \colon \mathcal{A}(1^n,f(x)) = h(x)\right] \leqslant \frac{1}{2} + \mu(n)$$

• Hardcore Predicate suffices to construct PRG

・ロト ・回ト ・ヨト ・ヨト 三日

• Step 1: OWF (OWP) \implies Hardcore Predicate for OWF (OWP)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへ⊙

- Step 1: OWF (OWP) \implies Hardcore Predicate for OWF (OWP)
- Step 2: Hardcore Predicate for OWF (OWP) \implies One-bit stretch PRG

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

- Step 1: OWF (OWP) \implies Hardcore Predicate for OWF (OWP)
- Step 2: Hardcore Predicate for OWF (OWP) \implies One-bit stretch PRG
- Step3: One-bit stretch PRG \implies Poly-stretch PRG

(日) (四) (三) (三) (三)

- Step 1: OWF (OWP) \implies Hardcore Predicate for OWF (OWP)
- Step 2: Hardcore Predicate for OWF (OWP) \implies One-bit stretch PRG
- Step3: One-bit stretch PRG \implies Poly-stretch PRG
- Today: Step 2 for OWP and Step 3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

- Step 1: OWF (OWP) \implies Hardcore Predicate for OWF (OWP)
- Step 2: Hardcore Predicate for OWF (OWP) \implies One-bit stretch PRG
- Step3: One-bit stretch PRG \implies Poly-stretch PRG
- Today: Step 2 for OWP and Step 3
- Step 1 in next lecture

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Hardcore Predicate for OWP \implies One-bit stretch PRG

• Construction: $G(s) = f(s) \parallel h(s)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへ⊙

Hardcore Predicate for OWP \implies One-bit stretch PRG

- Construction: $G(s) = f(s) \parallel h(s)$
- <u>Think</u>: Proof?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Intuition: Iterate the one-bit stretch PRG poly times

Construction of $G_{poly}: \{0,1\}^n \to \{0,1\}^{\ell(n)}$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへ⊙

Intuition: Iterate the one-bit stretch PRG poly times

Construction of $G_{poly}: \{0,1\}^n \to \{0,1\}^{\ell(n)}:$

• Let $G_1: \{0,1\}^n \to \{0,1\}^{n+1}$ be a one-bit stretch PRG

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

Intuition: Iterate the one-bit stretch PRG poly times

Construction of $G_{poly}: \{0,1\}^n \to \{0,1\}^{\ell(n)}$:

- Let $G_1: \{0,1\}^n \to \{0,1\}^{n+1}$ be a one-bit stretch PRG
- $X_0 \leftarrow s$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Intuition: Iterate the one-bit stretch PRG poly times

Construction of $G_{poly}: \{0,1\}^n \to \{0,1\}^{\ell(n)}:$

- Let $G_1: \{0,1\}^n \to \{0,1\}^{n+1}$ be a one-bit stretch PRG
- $X_0 \leftarrow s$
- $X_1 \| b_1 \leftarrow G_1(X_0)$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

Intuition: Iterate the one-bit stretch PRG poly times

Construction of $G_{poly}: \{0,1\}^n \to \{0,1\}^{\ell(n)}:$

- Let $G_1: \{0,1\}^n \to \{0,1\}^{n+1}$ be a one-bit stretch PRG
- $X_0 \leftarrow s$
- $X_1 \| b_1 \leftarrow G_1(X_0)$
- $X_2 \| b_2 \leftarrow G_1(X_1)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● 今へで

Construction of $G_{poly}: \{0,1\}^n \to \{0,1\}^{\ell(n)}:$

- Let $G_1: \{0,1\}^n \to \{0,1\}^{n+1}$ be a one-bit stretch PRG
- $X_0 \leftarrow s$
- $X_1 \| b_1 \leftarrow G_1(X_0)$
- $X_2 \| b_2 \leftarrow G_1(X_1)$
- $X_3 \| b_3 \leftarrow G_1(X_2)$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

Construction of $G_{poly}: \{0,1\}^n \to \{0,1\}^{\ell(n)}:$

- Let $G_1: \{0,1\}^n \to \{0,1\}^{n+1}$ be a one-bit stretch PRG
- $X_0 \leftarrow s$
- $X_1 \| b_1 \leftarrow G_1(X_0)$
- $X_2 \| b_2 \leftarrow G_1(X_1)$
- $X_3 \| b_3 \leftarrow G_1(X_2)$
- $X_i \| b_i \leftarrow G_1(X_{i-1})$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

Construction of $G_{poly}: \{0,1\}^n \to \{0,1\}^{\ell(n)}:$

- Let $G_1: \{0,1\}^n \to \{0,1\}^{n+1}$ be a one-bit stretch PRG
- $X_0 \leftarrow s$
- $X_1 \| b_1 \leftarrow G_1(X_0)$
- $X_2 \| b_2 \leftarrow G_1(X_1)$
- $X_3 \| b_3 \leftarrow G_1(X_2)$
- $X_i \| b_i \leftarrow G_1(X_{i-1})$
- $G_{poly}(s) := b_1 \dots b_{\ell(n)}$

・ロット 4回ッ 4回ッ 4回ット 4回 うろんで

Construction of $G_{poly}: \{0,1\}^n \to \{0,1\}^{\ell(n)}:$

- Let $G_1: \{0,1\}^n \to \{0,1\}^{n+1}$ be a one-bit stretch PRG
- $X_0 \leftarrow s$
- $X_1 \| b_1 \leftarrow G_1(X_0)$
- $X_2 \| b_2 \leftarrow G_1(X_1)$
- $X_3 \| b_3 \leftarrow G_1(X_2)$
- $X_i \| b_i \leftarrow G_1(X_{i-1})$
- $G_{poly}(s) := b_1 \dots b_{\ell(n)}$
- Proof?

・ロット 4回ッ 4回ッ 4回ット 4回 うろんで