Lecture 23: CCA Security - II

Recall: Chosen-Ciphertext Attacks (CCA)

- Adversary can make decryption queries over ciphertext of its choice
- CCA-1: Decryption queries only before challenge ciphertext query
- CCA-2: Decryption queries before and after challenge ciphertext query
- No decryption query c should be equal to challenge ciphertext c^*

Recall: Chosen-Ciphertext Attacks (CCA)

- Adversary can make decryption queries over ciphertext of its choice
- CCA-1: Decryption queries only before challenge ciphertext query
- CCA-2: Decryption queries before and after challenge ciphertext query
- No decryption query c should be equal to challenge ciphertext c^*

Last time: Construction of CCA-1 secure PKE

Recall: Chosen-Ciphertext Attacks (CCA)

- Adversary can make decryption queries over ciphertext of its choice
- CCA-1: Decryption queries only before challenge ciphertext query
- CCA-2: Decryption queries before and after challenge ciphertext query
- No decryption query c should be equal to challenge ciphertext c^*

<u>Last time</u>: Construction of CCA-1 secure PKE

Today: Construction of CCA-2 secure PKE

CCA-2 Security

$\mathbf{Expt}^{\mathsf{CCA2}}_{\mathcal{A}}(b,z)$:

- \bullet st = z
- $(pk, sk) \leftarrow \mathsf{Gen}(1^n)$
- Decryption query phase 1(repeated poly times):
 - $c \leftarrow \mathcal{A}(pk, \mathsf{st})$
 - $m \leftarrow \mathsf{Dec}(sk, c)$
 - $\bullet \ \mathsf{st} = (\mathsf{st}, m)$
- $(m_0, m_1) \leftarrow \mathcal{A}(pk, \mathsf{st})$
- $c^* \leftarrow \operatorname{Enc}(pk, m_b)$
- Decryption query phase 2 (repeated poly times):
 - $c \leftarrow \mathcal{A}(pk, c^*, \mathsf{st})$
 - If $c = c^*$, output reject
 - $m \leftarrow \mathsf{Dec}(sk, c)$
 - st = (st, m)
- Output $b' \leftarrow \mathcal{A}(pk, c^*, \mathsf{st})$

CCA-2 Security (contd.)

Definition (IND-CCA-2 Security)

A public-key encryption scheme (Gen, Enc, Dec) is IND-CCA-1 secure if for all n.u. PPT adversaries \mathcal{A} , there exists a negligible function $\mu(\cdot)$ s.t. for all auxiliary inputs $z \in \{0,1\}^*$:

$$\left| \Pr \left[\mathbf{Expt}_{\mathcal{A}}^{\mathsf{CCA2}}(1, z) = 1 \right] - \Pr \left[\mathbf{Expt}_{\mathcal{A}}^{\mathsf{CCA2}}(0, z) = 1 \right] \right| \leqslant \mu(n)$$

Question

Why doesn't the CCA-1 secure construction also satisfy CCA-2 security?

Main Challenge (Intuition)

• Adversary may be able to "maul" challenge ciphertext into another ciphertext and then request decryption

Main Challenge (Intuition)

- Adversary may be able to "maul" challenge ciphertext into another ciphertext and then request decryption
- "Two-key trick" (as used in CCA-1 construction) does not work anymore

Main Challenge (Intuition)

- Adversary may be able to "maul" challenge ciphertext into another ciphertext and then request decryption
- "Two-key trick" (as used in CCA-1 construction) does not work anymore
- Must ensure that adversary's decryption query is "independent" of (and not just different from) the challenge ciphertext

Construction [Dolev-Dwork-Naor]

Ingredients:

- An IND-CPA secure encryption scheme (Gen, Enc, Dec)
- An adaptive NIZK proof (K, P, V)
- A strongly unforgeable one-time signature (OTS) scheme (Setup, Sign, Verify). Assume, wlog, that verification keys in OTS scheme are of length n.

• $\operatorname{Gen}'(1^n)$:

- $\operatorname{Gen}'(1^n)$:
 - Compute CRS for NIZK: $\sigma \leftarrow \mathsf{K}(1^n)$

- $\operatorname{Gen}'(1^n)$:
 - Compute CRS for NIZK: $\sigma \leftarrow \mathsf{K}(1^n)$
 - \bullet Compute 2n key pairs of IND-CPA encryption scheme:

$$\left(pk_i^j, sk_i^j\right) \leftarrow \mathsf{Gen}(1^n), \text{ where } j \in \{0, 1\}, i \in [n].$$

- $Gen'(1^n)$:
 - Compute CRS for NIZK: $\sigma \leftarrow \mathsf{K}(1^n)$
 - \bullet Compute 2n key pairs of IND-CPA encryption scheme:

$$\left(pk_i^j, sk_i^j\right) \leftarrow \mathsf{Gen}(1^n), \text{ where } j \in \{0, 1\}, i \in [n].$$

• Output $pk' = (\{pk_i^0, pk_i^1\}, \sigma), sk' = (sk_1^0, sk_1^1).$

- $Gen'(1^n)$:
 - Compute CRS for NIZK: $\sigma \leftarrow \mathsf{K}(1^n)$
 - Compute 2n key pairs of IND-CPA encryption scheme:

$$\left(pk_i^j, sk_i^j\right) \leftarrow \mathsf{Gen}(1^n), \text{ where } j \in \{0, 1\}, \ i \in [n].$$

- Output $pk' = (\{pk_i^0, pk_i^1\}, \sigma), sk' = (sk_1^0, sk_1^1).$
- $\operatorname{Enc}'(pk',m)$:

- $Gen'(1^n)$:
 - Compute CRS for NIZK: $\sigma \leftarrow \mathsf{K}(1^n)$
 - Compute 2n key pairs of IND-CPA encryption scheme: $\left(pk_i^j, sk_i^j\right) \leftarrow \mathsf{Gen}(1^n)$, where $j \in \{0, 1\}, i \in [n]$.
 - Output $pk' = (\{pk_i^0, pk_i^1\}, \sigma), sk' = (sk_1^0, sk_1^1).$
- $\operatorname{Enc}'(pk',m)$:
 - Compute key pair for OTS scheme: $(SK, VK) \leftarrow \mathsf{Setup}(1^n)$.

- $Gen'(1^n)$:
 - Compute CRS for NIZK: $\sigma \leftarrow \mathsf{K}(1^n)$
 - Compute 2n key pairs of IND-CPA encryption scheme: $\left(pk_i^j, sk_i^j\right) \leftarrow \mathsf{Gen}(1^n)$, where $j \in \{0, 1\}, i \in [n]$.
 - Output $pk' = (\{pk_i^0, pk_i^1\}, \sigma), sk' = (sk_1^0, sk_1^1).$
- $\operatorname{Enc}'(pk',m)$:
 - Compute key pair for OTS scheme: $(SK, VK) \leftarrow \mathsf{Setup}(1^n)$.
 - Let $VK = VK_1, ..., VK_n$. For every $i \in [n]$, encrypt m using $pk_i^{VK_i}$ and randomness r_i : $c_i \leftarrow \text{Enc}\left(pk_i^{VK_i}, m; r_i\right)$

- $Gen'(1^n)$:
 - Compute CRS for NIZK: $\sigma \leftarrow \mathsf{K}(1^n)$
 - Compute 2n key pairs of IND-CPA encryption scheme: $\left(pk_i^j, sk_i^j\right) \leftarrow \mathsf{Gen}(1^n)$, where $j \in \{0, 1\}, \ i \in [n]$.
 - Output $pk' = (\{pk_i^0, pk_i^1\}, \sigma), sk' = (sk_1^0, sk_1^1).$
- $\operatorname{Enc}'(pk',m)$:
 - Compute key pair for OTS scheme: $(SK, VK) \leftarrow \mathsf{Setup}(1^n)$.
 - Let $VK = VK_1, ..., VK_n$. For every $i \in [n]$, encrypt m using $pk_i^{VK_i}$ and randomness r_i : $c_i \leftarrow \text{Enc}\left(pk_i^{VK_i}, m; r_i\right)$
 - Compute proof that each c_i encrypts the same message: $\pi \leftarrow \mathsf{P}(\sigma, x, w)$ where $x = \left(\left\{pk_i^{VK_i}\right\}, \left\{c_i\right\}\right), \ w = (m, \left\{r_i\right\})$ and R(x, w) = 1 iff every c_i encrypts the same message m.

- $\operatorname{Gen}'(1^n)$:
 - Compute CRS for NIZK: $\sigma \leftarrow \mathsf{K}(1^n)$
 - Compute 2n key pairs of IND-CPA encryption scheme: $\left(pk_i^j, sk_i^j\right) \leftarrow \mathsf{Gen}(1^n)$, where $j \in \{0, 1\}, i \in [n]$.
 - Output $pk' = (\{pk_i^0, pk_i^1\}, \sigma), sk' = (sk_1^0, sk_1^1).$
- $\operatorname{Enc}'(pk',m)$:
 - Compute key pair for OTS scheme: $(SK, VK) \leftarrow \mathsf{Setup}(1^n)$.
 - Let $VK = VK_1, ..., VK_n$. For every $i \in [n]$, encrypt m using $pk_i^{VK_i}$ and randomness r_i : $c_i \leftarrow \text{Enc}\left(pk_i^{VK_i}, m; r_i\right)$
 - Compute proof that each c_i encrypts the same message: $\pi \leftarrow \mathsf{P}(\sigma, x, w)$ where $x = \left(\left\{pk_i^{VK_i}\right\}, \left\{c_i\right\}\right), w = (m, \left\{r_i\right\})$ and R(x, w) = 1 iff every c_i encrypts the same message m.
 - Sign everything: $\Phi \leftarrow \mathsf{Sign}(SK, M)$ where $M = (\{c_i\}, \pi)$

- $\operatorname{Gen}'(1^n)$:
 - Compute CRS for NIZK: $\sigma \leftarrow \mathsf{K}(1^n)$
 - Compute 2n key pairs of IND-CPA encryption scheme: $\left(pk_i^j, sk_i^j\right) \leftarrow \mathsf{Gen}(1^n)$, where $j \in \{0, 1\}, \ i \in [n]$.
 - Output $pk' = (\{pk_i^0, pk_i^1\}, \sigma), sk' = (sk_1^0, sk_1^1).$
- $\operatorname{Enc}'(pk',m)$:
 - Compute key pair for OTS scheme: $(SK, VK) \leftarrow \mathsf{Setup}(1^n)$.
 - Let $VK = VK_1, ..., VK_n$. For every $i \in [n]$, encrypt m using $pk_i^{VK_i}$ and randomness r_i : $c_i \leftarrow \text{Enc}\left(pk_i^{VK_i}, m; r_i\right)$
 - Compute proof that each c_i encrypts the same message: $\pi \leftarrow \mathsf{P}(\sigma, x, w)$ where $x = \left(\left\{pk_i^{VK_i}\right\}, \left\{c_i\right\}\right), w = (m, \left\{r_i\right\})$ and R(x, w) = 1 iff every c_i encrypts the same message m.
 - Sign everything: $\Phi \leftarrow \mathsf{Sign}(SK, M)$ where $M = (\{c_i\}, \pi)$
 - Output $c' = (VK, \{c_i\}, \pi, \Phi)$

• $\mathsf{Dec}'(sk',c')$:

- $\operatorname{Dec}'(sk',c')$:
 - Parse $c' = (VK, \{c_i\}, \pi, \Phi)$

- $\operatorname{Dec}'(sk',c')$:
 - Parse $c' = (VK, \{c_i\}, \pi, \Phi)$
 - Let $M = (\{c_i\}, \pi)$

- $\operatorname{Dec}'(sk',c')$:
 - Parse $c' = (VK, \{c_i\}, \pi, \Phi)$
 - Let $M = (\{c_i\}, \pi)$
 - Verify the signature: Output \bot if Verify $(VK, M, \Phi) = 0$

- $\mathsf{Dec}'(sk',c')$:
 - Parse $c' = (VK, \{c_i\}, \pi, \Phi)$
 - Let $M = (\{c_i\}, \pi)$
 - Verify the signature: Output \perp if Verify $(VK, M, \Phi) = 0$
 - Verify the NIZK proof: Output \perp if $V(\sigma, \pi) = 0$

- $\mathsf{Dec}'(sk',c')$:
 - Parse $c' = (VK, \{c_i\}, \pi, \Phi)$
 - Let $M = (\{c_i\}, \pi)$
 - Verify the signature: Output \bot if Verify $(VK, M, \Phi) = 0$
 - Verify the NIZK proof: Output \perp if $V(\sigma, \pi) = 0$
 - Else, decrypt the first ciphertext component: $m' \leftarrow \mathsf{Dec}\left(sk_1^{VK_1}, c_1\right)$

- $\mathsf{Dec}'(sk',c')$:
 - Parse $c' = (VK, \{c_i\}, \pi, \Phi)$
 - Let $M = (\{c_i\}, \pi)$
 - Verify the signature: Output \bot if Verify $(VK, M, \Phi) = 0$
 - Verify the NIZK proof: Output \perp if $V(\sigma, \pi) = 0$
 - Else, decrypt the first ciphertext component: $m' \leftarrow \mathsf{Dec}\left(sk_1^{VK_1}, c_1\right)$
 - Output m'

Consider decryption queries after the challenge ciphertext query c^* :

 \bullet Let c be a decryption query

- \bullet Let c be a decryption query
- If verification key VK in c and verification key VK^* in challenge ciphertext c^* are same, then we can break the strong unforgeability of OTS

- \bullet Let c be a decryption query
- If verification key VK in c and verification key VK^* in challenge ciphertext c^* are same, then we can break the strong unforgeability of OTS
- If different, then VK and VK^* differ in at least one position $\ell \in [n]$:

- \bullet Let c be a decryption query
- If verification key VK in c and verification key VK^* in challenge ciphertext c^* are same, then we can break the strong unforgeability of OTS
- If different, then VK and VK^* differ in at least one position $\ell \in [n]$:
 - Answer decryption query using the secret key $sk_{\ell}^{VK_i}$.

- \bullet Let c be a decryption query
- If verification key VK in c and verification key VK^* in challenge ciphertext c^* are same, then we can break the strong unforgeability of OTS
- If different, then VK and VK^* differ in at least one position $\ell \in [n]$:
 - Answer decryption query using the secret key $sk_{\ell}^{VK_i}$.
 - \bullet Don't need to know the secret keys $sk_i^{VK_i^*}$ for $i\in[n]$

- \bullet Let c be a decryption query
- If verification key VK in c and verification key VK^* in challenge ciphertext c^* are same, then we can break the strong unforgeability of OTS
- If different, then VK and VK^* differ in at least one position $\ell \in [n]$:
 - Answer decryption query using the secret key $sk_{\ell}^{VK_i}$.
 - Don't need to know the secret keys $sk_i^{VK_i^*}$ for $i \in [n]$
 - Reduce to IND-CPA security of underlying encryption scheme

Security (Hybrids)

• H_0 : (Honest) Encryption of m_0

Security (Hybrids)

- H_0 : (Honest) Encryption of m_0
- H_1 : Compute CRS σ in public key and proof π in challenge ciphertext using NIZK simulator

- H_0 : (Honest) Encryption of m_0
- H_1 : Compute CRS σ in public key and proof π in challenge ciphertext using NIZK simulator
- H_2 : Choose VK^* in the beginning during Gen'

- H_0 : (Honest) Encryption of m_0
- H_1 : Compute CRS σ in public key and proof π in challenge ciphertext using NIZK simulator
- H_2 : Choose VK^* in the beginning during Gen'
- H_3 : For any decryption query $c = (VK, \{c_i\}, \pi, \Phi)$:

- H_0 : (Honest) Encryption of m_0
- H_1 : Compute CRS σ in public key and proof π in challenge ciphertext using NIZK simulator
- H_2 : Choose VK^* in the beginning during Gen'
- H_3 : For any decryption query $c = (VK, \{c_i\}, \pi, \Phi)$:
 - If $VK = VK^*$ and Verify $(VK, (\{c_i\}, \pi, \Phi), \Phi) = 1$, then abort.

- H_0 : (Honest) Encryption of m_0
- H_1 : Compute CRS σ in public key and proof π in challenge ciphertext using NIZK simulator
- H_2 : Choose VK^* in the beginning during Gen'
- H_3 : For any decryption query $c = (VK, \{c_i\}, \pi, \Phi)$:
 - If $VK = VK^*$ and Verify $(VK, (\{c_i\}, \pi, \Phi), \Phi) = 1$, then abort.
 - Else, let $\ell \in [n]$ be such that VK^* and VK in c differ at position ℓ . Set $sk' = \left\{ sk_i^{\overline{VK}_i^*} \right\}, i \in [n]$, where $\overline{VK}_i^* = 1 - VK_i^*$. Decrypt c by

decrypting c_{ℓ} (instead of c_1) using $sk_{\ell}^{\overline{VK_{\ell}^*}}$.

- H_0 : (Honest) Encryption of m_0
- H_1 : Compute CRS σ in public key and proof π in challenge ciphertext using NIZK simulator
- H_2 : Choose VK^* in the beginning during Gen'
- H_3 : For any decryption query $c = (VK, \{c_i\}, \pi, \Phi)$:
 - If $VK = VK^*$ and Verify $(VK, (\{c_i\}, \pi, \Phi), \Phi) = 1$, then abort.
 - Else, let $\ell \in [n]$ be such that VK^* and VK in c differ at position ℓ . Set $sk' = \left\{ sk_i^{\overline{VK}_i^*} \right\}$, $i \in [n]$, where $\overline{VK}_i^* = 1 - VK_i^*$. Decrypt c by decrypting c_ℓ (instead of c_1) using $sk_\ell^{\overline{VK}_\ell^*}$.
- H_4 : Change every c_i^* in c^* to encryption of m_1

- H_0 : (Honest) Encryption of m_0
- H_1 : Compute CRS σ in public key and proof π in challenge ciphertext using NIZK simulator
- H_2 : Choose VK^* in the beginning during Gen'
- H_3 : For any decryption query $c = (VK, \{c_i\}, \pi, \Phi)$:
 - If $VK = VK^*$ and Verify $(VK, (\{c_i\}, \pi, \Phi), \Phi) = 1$, then abort.
 - Else, let $\ell \in [n]$ be such that VK^* and VK in c differ at position ℓ . Set $sk' = \left\{ sk_i^{\overline{VK}_i^*} \right\}$, $i \in [n]$, where $\overline{VK}_i^* = 1 - VK_i^*$. Decrypt c by decrypting c_ℓ (instead of c_1) using $sk_\ell^{\overline{VK}_\ell^*}$.
- H_4 : Change every c_i^* in c^* to encryption of m_1
- H_5 : Compute CRS σ in public key and proof π in challenge ciphertext honestly. This experiment is same as (honest) encryption of m_1 .

• $H_0 \approx H_1$: ZK property of NIZK

- $H_0 \approx H_1$: ZK property of NIZK
- $H_1 \approx H_2$: Generating VK^* early or later does not change the distribution

- $H_0 \approx H_1$: ZK property of NIZK
- $H_1 \approx H_2$: Generating VK^* early or later does not change the distribution
- $H_2 \approx H_3$: We argue indistinguishability as follows:

- $H_0 \approx H_1$: ZK property of NIZK
- $H_1 \approx H_2$: Generating VK^* early or later does not change the distribution
- $H_2 \approx H_3$: We argue indistinguishability as follows:
 - First, we argue that probability of aborting is negligible. Recall that $c \neq c^*$ by the definition of CCA-2. Then, if $VK = VK^*$, it must be that $(\{c_i\}, \pi, \Phi) \neq (\{c_i^*\}, \pi^*, \Phi^*)$. Now, if Verify $(VK, (\{c_i\}, \pi), \Phi) = 1$, then we can break strong unforgeability of the OTS scheme.

- $H_0 \approx H_1$: ZK property of NIZK
- $H_1 \approx H_2$: Generating VK^* early or later does not change the distribution
- $H_2 \approx H_3$: We argue indistinguishability as follows:
 - First, we argue that probability of aborting is negligible. Recall that $c \neq c^*$ by the definition of CCA-2. Then, if $VK = VK^*$, it must be that $(\{c_i\}, \pi, \Phi) \neq (\{c_i^*\}, \pi^*, \Phi^*)$. Now, if Verify $(VK, (\{c_i\}, \pi), \Phi) = 1$, then we can break strong unforgeability of the OTS scheme.
 - Now, conditioned on not aborting, let ℓ be the position s.t. $VK_{\ell} \neq VK_{\ell}^*$. Note that the only difference in H_2 and H_3 in this case might be the answers to the decryption queries of adversary. In particular, in H_2 , we decrypt c_1 in c using $sk_1^{VK_1}$. In contrast, in H_3 , we decrypt c_{ℓ} in c using $sk_{\ell}^{VK_{\ell}^*}$. Now, from soundness of NIZK, it follows that except with negligible probability, all the c_i 's in c encrypt the same message. Therefore decrypting c_{ℓ} instead of c_1 does not change the answer.

Indistinguishability of Hybrids (contd.)

- $H_3 \approx H_4$: IND-CPA security of underlying PKE
- $H_4 \approx H_5$: ZK property of NIZK

Indistinguishability of Hybrids (contd.)

- $H_3 \approx H_4$: IND-CPA security of underlying PKE
- $H_4 \approx H_5$: ZK property of NIZK

Combining the above, we get $H_0 \approx H_5$.