Lecture 12: Authentication

- Alice wants to send a message m to Bob in such a manner that upon receipt, Bob can determine whether the message arrived untampered or not
- Alice wants to send a message m to Bob in such a manner that upon receipt, Bob can determine whether the message arrived untampered or not
- Want: Digital analogue of physical signatures
- Alice wants to send a message m to Bob in such a manner that upon receipt, Bob can determine whether the message arrived untampered or not
- Want: Digital analogue of physical signatures
- Alice ("signer") signs a message m to produce a signature σ
- Alice wants to send a message m to Bob in such a manner that upon receipt, Bob can determine whether the message arrived untampered or not
- Want: Digital analogue of physical signatures
- Alice ("signer") signs a message m to produce a signature σ
- Bob ("verifier") can verify that σ is indeed generated for m
- Alice wants to send a message m to Bob in such a manner that upon receipt, Bob can determine whether the message arrived untampered or not
- Want: Digital analogue of physical signatures
- Alice ("signer") signs a message m to produce a signature σ
- Bob ("verifier") can verify that σ is indeed generated for m
- Adversary cannot forge a signature
(1) Private Key: Message Authentication Codes
(1) Private Key: Message Authentication Codes
(2) Public Key: Digital Signatures

Message Authentication Code (MAC)

Message Authentication Code (MAC)

- Signer and Verifier "share a secret"

Message Authentication Code (MAC)

- Signer and Verifier "share a secret"
- Key Generation: Gen $\left(1^{n}\right)$ outputs secret key k

Message Authentication Code (MAC)

- Signer and Verifier "share a secret"
- Key Generation: Gen $\left(1^{n}\right)$ outputs secret key k
- Sign: $\operatorname{Tag}_{k}(m)$ outputs a $\operatorname{tag} \sigma$

Message Authentication Code (MAC)

- Signer and Verifier "share a secret"
- Key Generation: Gen $\left(1^{n}\right)$ outputs secret key k
- Sign: $\operatorname{Tag}_{k}(m)$ outputs a $\operatorname{tag} \sigma$
- Verify: $\operatorname{Ver}_{k}(m, \sigma)$ is 1 if and only if σ is a valid tag of m under the secret key k

Message Authentication Code (MAC)

- Signer and Verifier "share a secret"
- Key Generation: Gen $\left(1^{n}\right)$ outputs secret key k
- Sign: $\operatorname{Tag}_{k}(m)$ outputs a tag σ
- Verify: $\operatorname{Ver}_{k}(m, \sigma)$ is 1 if and only if σ is a valid tag of m under the secret key k

Security: An adversary can observe multiple (message,tag) pairs of its choice, but still cannot forge a tag on a new message

MAC: Algorithms

- $k \leftarrow \operatorname{Gen}\left(1^{n}\right)$

MAC: Algorithms

- $k \leftarrow \operatorname{Gen}\left(1^{n}\right)$
- $\sigma \leftarrow \operatorname{Tag}_{k}(m)$

MAC: Algorithms

- $k \leftarrow \operatorname{Gen}\left(1^{n}\right)$
- $\sigma \leftarrow \operatorname{Tag}_{k}(m)$
- $\operatorname{Ver}_{k}: \mathcal{M} \times \mathcal{T} \rightarrow\{0,1\}$

MAC: Algorithms

- $k \leftarrow \operatorname{Gen}\left(1^{n}\right)$
- $\sigma \leftarrow \operatorname{Tag}_{k}(m)$
- Ver $_{k}: \mathcal{M} \times \mathcal{T} \rightarrow\{0,1\}$
- Correctness:
$\operatorname{Pr}\left[k \leftarrow \operatorname{Gen}\left(1^{n}\right), \sigma \leftarrow \operatorname{Tag}_{k}(m): \operatorname{Ver}_{k}(m, \sigma)=1\right]=1$

MAC: Algorithms

- $k \leftarrow \operatorname{Gen}\left(1^{n}\right)$
- $\sigma \leftarrow \operatorname{Tag}_{k}(m)$
- $\operatorname{Ver}_{k}: \mathcal{M} \times \mathcal{T} \rightarrow\{0,1\}$
- Correctness:
$\operatorname{Pr}\left[k \leftarrow \operatorname{Gen}\left(1^{n}\right), \sigma \leftarrow \operatorname{Tag}_{k}(m): \operatorname{Ver}_{k}(m, \sigma)=1\right]=1$
- Security (UF-CMA): For all n.u. PPT adversary \mathcal{A} there exists a negligible $\nu(\cdot)$ such that:

$$
\operatorname{Pr}\left[\begin{array}{c}
k \leftarrow \operatorname{Gen}\left(1^{n}\right) \\
(m, \sigma) \leftarrow \mathcal{A}^{\operatorname{Tag}}{ }_{k}(\cdot)\left(1^{n}\right)
\end{array}: \begin{array}{c}
\mathcal{A} \operatorname{did} \text { not query } m \wedge \\
\operatorname{Ver}_{k}(m, \sigma)=1
\end{array}\right] \leqslant \nu(n)
$$

MAC: Construction

MAC: Construction

Theorem
 $P R F \Longrightarrow M A C$

Theorem
 $P R F \Longrightarrow M A C$
 - Gen $\left(1^{n}\right):$ Output $k \stackrel{\$}{\leftarrow}\{0,1\}^{n}$

Theorem

$$
P R F \Longrightarrow M A C
$$

- Gen $\left(1^{n}\right):$ Output $k \stackrel{\$}{\leftarrow}\{0,1\}^{n}$
- $\operatorname{Tag}_{k}(m):$ Output $f_{k}(m)$

Theorem

$P R F \Longrightarrow M A C$

- Gen $\left(1^{n}\right):$ Output $k \stackrel{\$}{\leftarrow}\{0,1\}^{n}$
- $\operatorname{Tag}_{k}(m):$ Output $f_{k}(m)$
- $\operatorname{Ver}_{k}(m, \sigma)$: Output $f_{k}(m) \stackrel{?}{=} \sigma$

Theorem

$P R F \Longrightarrow M A C$

- Gen $\left(1^{n}\right):$ Output $k \stackrel{\$}{\leftarrow}\{0,1\}^{n}$
- $\operatorname{Tag}_{k}(m):$ Output $f_{k}(m)$
- $\operatorname{Ver}_{k}(m, \sigma)$: Output $f_{k}(m) \stackrel{?}{=} \sigma$
- Think: Proof?

One-time MAC

- Weaker Security: Adversary is allowed only one query

One-time MAC

- Weaker Security: Adversary is allowed only one query
- Advantage: Unconditional security!

One-time MAC

- Weaker Security: Adversary is allowed only one query
- Advantage: Unconditional security!
- Analogue of OTP for authentication

One-time MAC

- Weaker Security: Adversary is allowed only one query
- Advantage: Unconditional security!
- Analogue of OTP for authentication
- Think \& Read

Digital Signature

- Only Signer can sign but everyone can verify

Digital Signature

- Only Signer can sign but everyone can verify
- Key Generation: $(s k, p k) \leftarrow \operatorname{Gen}\left(1^{n}\right)$

Digital Signature

- Only Signer can sign but everyone can verify
- Key Generation: $(s k, p k) \leftarrow \operatorname{Gen}\left(1^{n}\right)$
- Sign: $\sigma \leftarrow \operatorname{Sign}_{s k}(m)$

Digital Signature

- Only Signer can sign but everyone can verify
- Key Generation: $(s k, p k) \leftarrow \operatorname{Gen}\left(1^{n}\right)$
- Sign: $\sigma \leftarrow \operatorname{Sign}_{s k}(m)$
- Verify: $\operatorname{Ver}_{p k}(m, \sigma): \mathcal{M} \times \mathcal{S} \rightarrow\{0,1\}$

Digital Signature

- Only Signer can sign but everyone can verify
- Key Generation: $(s k, p k) \leftarrow \operatorname{Gen}\left(1^{n}\right)$
- Sign: $\sigma \leftarrow \operatorname{Sign}_{s k}(m)$
- Verify: $\operatorname{Ver}_{p k}(m, \sigma): \mathcal{M} \times \mathcal{S} \rightarrow\{0,1\}$
- Correctness:

$$
\operatorname{Pr}\left[(s k, p k) \leftarrow \operatorname{Gen}\left(1^{n}\right), \sigma \leftarrow \operatorname{Sign}_{s k}(m): \operatorname{Ver}_{p k}(m, \sigma)=1\right]=1
$$

Digital Signature

- Only Signer can sign but everyone can verify
- Key Generation: $(s k, p k) \leftarrow \operatorname{Gen}\left(1^{n}\right)$
- Sign: $\sigma \leftarrow \operatorname{Sign}_{s k}(m)$
- Verify: $\operatorname{Ver}_{p k}(m, \sigma): \mathcal{M} \times \mathcal{S} \rightarrow\{0,1\}$
- Correctness:

$$
\operatorname{Pr}\left[(s k, p k) \leftarrow \operatorname{Gen}\left(1^{n}\right), \sigma \leftarrow \operatorname{Sign}_{s k}(m): \operatorname{Ver}_{p k}(m, \sigma)=1\right]=1
$$

- Security (UF-CMA):

$$
\operatorname{Pr}\left[\underset{(m, \sigma) \leftarrow \mathcal{A}^{\operatorname{SigG}_{s k}(\cdot)}\left(1^{n}, p k\right)}{(s k, p k) \underset{\operatorname{Gen}\left(1^{n}\right)}{ }: \stackrel{\mathcal{A} \text { did not query } m \wedge}{\operatorname{Ver}_{p k}(m, \sigma)=1}}\right] \leqslant \nu(n)
$$

Digital Signature

- Only Signer can sign but everyone can verify
- Key Generation: $(s k, p k) \leftarrow \operatorname{Gen}\left(1^{n}\right)$
- Sign: $\sigma \leftarrow \operatorname{Sign}_{s k}(m)$
- Verify: $\operatorname{Ver}_{p k}(m, \sigma): \mathcal{M} \times \mathcal{S} \rightarrow\{0,1\}$
- Correctness:

$$
\operatorname{Pr}\left[(s k, p k) \leftarrow \operatorname{Gen}\left(1^{n}\right), \sigma \leftarrow \operatorname{Sign}_{s k}(m): \operatorname{Ver}_{p k}(m, \sigma)=1\right]=1
$$

- Security (UF-CMA):

$$
\operatorname{Pr}\left[\begin{array}{c}
(s k, p k) \leftarrow \operatorname{Gen}\left(1^{n}\right) \\
(m, \sigma) \leftarrow \mathcal{A}^{\operatorname{SigG}_{s k}(\cdot)}\left(1^{n}, p k\right)
\end{array}: \stackrel{\mathcal{A} \text { did not query } m \wedge}{\operatorname{Ver}_{p k}(m, \sigma)=1} \\
right] \leqslant \nu(n)
$$

- One-time Signatures: Adversary is allowed only one query

One-time Signature: Construction [Lamport]

Let f be a one-way function

One-time Signature: Construction [Lamport]

Let f be a one-way function

- $s k:=\left(\begin{array}{cccc}x_{1}^{0} & x_{2}^{0} & \ldots & x_{n}^{0} \\ x_{1}^{1} & x_{2}^{1} & \ldots & x_{n}^{1}\end{array}\right)$, where $x_{i}^{b} \stackrel{\S}{\leftarrow}\{0,1\}^{n}$ for all $i \in[n]$ and $b \in\{0,1\}$

One-time Signature: Construction [Lamport]

Let f be a one-way function

- $s k:=\left(\begin{array}{cccc}x_{1}^{0} & x_{2}^{0} & \ldots & x_{n}^{0} \\ x_{1}^{1} & x_{2}^{1} & \ldots & x_{n}^{1}\end{array}\right)$, where $x_{i}^{b} \stackrel{\S}{\leftarrow}\{0,1\}^{n}$ for all $i \in[n]$ and $b \in\{0,1\}$
- $p k:=\left(\begin{array}{llll}y_{1}^{0} & y_{2}^{0} & \ldots & y_{n}^{0} \\ y_{1}^{1} & y_{2}^{1} & \ldots & y_{n}^{1}\end{array}\right)$, where $y_{i}^{b}=f\left(x_{i}^{b}\right)$ for all $i \in[n]$ and $b \in\{0,1\}$

One-time Signature: Construction [Lamport]

Let f be a one-way function

- $s k:=\left(\begin{array}{cccc}x_{1}^{0} & x_{2}^{0} & \ldots & x_{n}^{0} \\ x_{1}^{1} & x_{2}^{1} & \ldots & x_{n}^{1}\end{array}\right)$, where $x_{i}^{b} \stackrel{\S}{\leftarrow}\{0,1\}^{n}$ for all $i \in[n]$ and $b \in\{0,1\}$
- $p k:=\left(\begin{array}{cccc}y_{1}^{0} & y_{2}^{0} & \ldots & y_{n}^{0} \\ y_{1}^{1} & y_{2}^{1} & \ldots & y_{n}^{1}\end{array}\right)$, where $y_{i}^{b}=f\left(x_{i}^{b}\right)$ for all $i \in[n]$ and $b \in\{0,1\}$
- $\operatorname{Sign}_{s k}(m): \sigma:=\left(x_{1}^{m_{1}}, x_{2}^{m_{2}}, \ldots, x_{n}^{m_{n}}\right)$

One-time Signature: Construction [Lamport]

Let f be a one-way function

- $s k:=\left(\begin{array}{cccc}x_{1}^{0} & x_{2}^{0} & \ldots & x_{n}^{0} \\ x_{1}^{1} & x_{2}^{1} & \ldots & x_{n}^{1}\end{array}\right)$, where $x_{i}^{b} \stackrel{\S}{\leftarrow}\{0,1\}^{n}$ for all $i \in[n]$ and $b \in\{0,1\}$
- $p k:=\left(\begin{array}{ccc}y_{1}^{0} & y_{2}^{0} & \ldots \\ y_{1}^{1} & y_{2}^{1} & \ldots\end{array} y_{n}^{0} 1\right)$, where $y_{i}^{b}=f\left(x_{i}^{b}\right)$ for all $i \in[n]$ and $b \in\{0,1\}$
- $\operatorname{Sign}_{s k}(m): \sigma:=\left(x_{1}^{m_{1}}, x_{2}^{m_{2}}, \ldots, x_{n}^{m_{n}}\right)$
- $\operatorname{Ver}_{p k}(m, \sigma): \wedge{ }_{i \in[n]} f\left(\sigma_{i}\right) \stackrel{?}{=} y_{i}^{m_{i}}$

One-time Signature: Construction [Lamport]

Let f be a one-way function

- $s k:=\left(\begin{array}{cccc}x_{1}^{0} & x_{2}^{0} & \ldots & x_{n}^{0} \\ x_{1}^{1} & x_{2}^{1} & \ldots & x_{n}^{1}\end{array}\right)$, where $x_{i}^{b} \stackrel{\S}{\leftarrow}\{0,1\}^{n}$ for all $i \in[n]$ and $b \in\{0,1\}$
- $p k:=\left(\begin{array}{ccc}y_{1}^{0} & y_{2}^{0} & \ldots \\ y_{1}^{1} & y_{2}^{1} & \ldots\end{array} y_{n}^{0} 1\right)$, where $y_{i}^{b}=f\left(x_{i}^{b}\right)$ for all $i \in[n]$ and $b \in\{0,1\}$
- $\operatorname{Sign}_{s k}(m): \sigma:=\left(x_{1}^{m_{1}}, x_{2}^{m_{2}}, \ldots, x_{n}^{m_{n}}\right)$
- $\operatorname{Ver}_{p k}(m, \sigma): \wedge{ }_{i \in[n]} f\left(\sigma_{i}\right) \stackrel{?}{=} y_{i}^{m_{i}}$
- Think: Proof?

One-time Signature: Construction [Lamport]

Let f be a one-way function

- $s k:=\left(\begin{array}{cccc}x_{1}^{0} & x_{2}^{0} & \ldots & x_{n}^{0} \\ x_{1}^{1} & x_{2}^{1} & \ldots & x_{n}^{1}\end{array}\right)$, where $x_{i}^{b} \stackrel{\&}{\leftarrow}\{0,1\}^{n}$ for all $i \in[n]$ and $b \in\{0,1\}$
- $p k:=\left(\begin{array}{ccc}y_{1}^{0} & y_{2}^{0} & \ldots \\ y_{1}^{1} & y_{2}^{1} & \ldots\end{array} y_{n}^{0} 1\right)$, where $y_{i}^{b}=f\left(x_{i}^{b}\right)$ for all $i \in[n]$ and $b \in\{0,1\}$
- $\operatorname{Sign}_{s k}(m): \sigma:=\left(x_{1}^{m_{1}}, x_{2}^{m_{2}}, \ldots, x_{n}^{m_{n}}\right)$
- $\operatorname{Ver}_{p k}(m, \sigma): \wedge{ }_{i \in[n]} f\left(\sigma_{i}\right) \stackrel{?}{=} y_{i}^{m_{i}}$
- Think: Proof?

Think: How to sign long messages?

Collision-resistant Hash Functions

- Intuition: A compressing function h for which it is hard to find x, x^{\prime} s.t. $x \neq x^{\prime}$ but $h(x)=h\left(x^{\prime}\right)$

Collision-resistant Hash Functions

- Intuition: A compressing function h for which it is hard to find x, x^{\prime} s.t. $x \neq x^{\prime}$ but $h(x)=h\left(x^{\prime}\right)$
- Impossible for non-uniform adversary notion

Collision-resistant Hash Functions

- Intuition: A compressing function h for which it is hard to find x, x^{\prime} s.t. $x \neq x^{\prime}$ but $h(x)=h\left(x^{\prime}\right)$
- Impossible for non-uniform adversary notion
- Think: Why?

Collision-resistant Hash Functions

- Intuition: A compressing function h for which it is hard to find x, x^{\prime} s.t. $x \neq x^{\prime}$ but $h(x)=h\left(x^{\prime}\right)$
- Impossible for non-uniform adversary notion
- Think: Why?
- Need to consider a family of hash functions

Collision-resistant Hash Function Family

Definition (Collision-resistant Hash Function Family)
A family of functions $H=\left\{h_{i}: D_{i} \rightarrow R_{i}\right\}_{i \in I}$ is a collision-resistant hash function family (CRHF) if:

Collision-resistant Hash Function Family

Definition (Collision-resistant Hash Function Family)
A family of functions $H=\left\{h_{i}: D_{i} \rightarrow R_{i}\right\}_{i \in I}$ is a collision-resistant hash function family (CRHF) if:

- Easy to Sample: There exists a PPT Gen s.t.: $i \leftarrow \operatorname{Gen}\left(1^{n}\right), i \in I$

Collision-resistant Hash Function Family

Definition (Collision-resistant Hash Function Family)
A family of functions $H=\left\{h_{i}: D_{i} \rightarrow R_{i}\right\}_{i \in I}$ is a collision-resistant hash function family (CRHF) if:

- Easy to Sample: There exists a PPT Gen s.t.: $i \leftarrow \operatorname{Gen}\left(1^{n}\right), i \in I$
- Compression: $\left|R_{i}\right|<\left|D_{i}\right|$

Collision-resistant Hash Function Family

Definition (Collision-resistant Hash Function Family)
A family of functions $H=\left\{h_{i}: D_{i} \rightarrow R_{i}\right\}_{i \in I}$ is a collision-resistant hash function family (CRHF) if:

- Easy to Sample: There exists a PPT Gen s.t.: $i \leftarrow \operatorname{Gen}\left(1^{n}\right), i \in I$
- Compression: $\left|R_{i}\right|<\left|D_{i}\right|$
- Easy to Evaluate: There exists a poly-time algorithm Eval s.t. given $x \in D_{i}, i \in I, \operatorname{Eval}(x, i)=h_{i}(x)$

Collision-resistant Hash Function Family

Definition (Collision-resistant Hash Function Family)

A family of functions $H=\left\{h_{i}: D_{i} \rightarrow R_{i}\right\}_{i \in I}$ is a collision-resistant hash function family (CRHF) if:

- Easy to Sample: There exists a PPT Gen s.t.: $i \leftarrow \operatorname{Gen}\left(1^{n}\right), i \in I$
- Compression: $\left|R_{i}\right|<\left|D_{i}\right|$
- Easy to Evaluate: There exists a poly-time algorithm Eval s.t. given $x \in D_{i}, i \in I, \operatorname{Eval}(x, i)=h_{i}(x)$
- Collision Resistance: For all n.u. PPT \mathcal{A}, \exists negligible function $\mu(\cdot)$ s.t.

$$
\left.\operatorname{Pr}\left[\begin{array}{cl}
i \stackrel{\Phi}{\leftarrow} \operatorname{Gen}\left(1^{n}\right), & x \neq x^{\prime} \wedge \\
\left(x, x^{\prime}\right) \leftarrow \mathcal{A}\left(1^{n}, i\right)
\end{array}\right] \leqslant \begin{array}{l}
h_{i}(x)=h_{i}\left(x^{\prime}\right)
\end{array}\right] \leqslant \mu(n)
$$

Remarks

- One-bit compression implies arbitrary bit compression

Remarks

- One-bit compression implies arbitrary bit compression
- Think: Proof?

Remarks

- One-bit compression implies arbitrary bit compression
- Think: Proof?
- Read: Merkle Trees
- One-bit compression implies arbitrary bit compression
- Think: Proof?
- Read: Merkle Trees
- Range cannot be too small
- One-bit compression implies arbitrary bit compression
- Think: Proof?
- Read: Merkle Trees
- Range cannot be too small
- Enumeration Attacks
- One-bit compression implies arbitrary bit compression
- Think: Proof?
- Read: Merkle Trees
- Range cannot be too small
- Enumeration Attacks
- Birthday Attack
- One-bit compression implies arbitrary bit compression
- Think: Proof?
- Read: Merkle Trees
- Range cannot be too small
- Enumeration Attacks
- Birthday Attack
- Existence:
- One-bit compression implies arbitrary bit compression
- Think: Proof?
- Read: Merkle Trees
- Range cannot be too small
- Enumeration Attacks
- Birthday Attack
- Existence:
- Unlikely to be constructed from OWF or OWP [Simon98]
- One-bit compression implies arbitrary bit compression
- Think: Proof?
- Read: Merkle Trees
- Range cannot be too small
- Enumeration Attacks
- Birthday Attack
- Existence:
- Unlikely to be constructed from OWF or OWP [Simon98]
- Can be constructed from number-theoretic assumptions such as factoring, discrete log

Remarks (contd.)

- Weaker notion: Universal One-way Hash Functions (UOWHF)

Remarks (contd.)

- Weaker notion: Universal One-way Hash Functions (UOWHF)

$$
\operatorname{Pr}\left[\begin{array}{rl}
(x, \text { state }) \leftarrow \mathcal{A}\left(1^{n}\right), & \\
i \neq x^{\prime} \wedge \\
x^{\prime} \leftarrow \mathcal{A}(i, \text { state }) &
\end{array} \quad \begin{array}{l}
h_{i}(x)=h_{i}\left(x^{\prime}\right)
\end{array}\right] \leqslant \mu(n)
$$

Remarks (contd.)

- Weaker notion: Universal One-way Hash Functions (UOWHF)
-

$$
\operatorname{Pr}\left[\begin{array}{rl}
(x, \text { state }) \leftarrow \mathcal{A}\left(1^{n}\right), & \\
i \stackrel{\$ \neq x^{\prime} \wedge}{\leftarrow} \operatorname{Gen}\left(1^{n}\right), & : \\
x^{\prime} \leftarrow \mathcal{A}(i, \text { state }) & h_{i}(x)=h_{i}\left(x^{\prime}\right)
\end{array}\right] \leqslant \mu(n)
$$

- Can be constructed from OWF [Rompel90]

Remarks (contd.)

- Weaker notion: Universal One-way Hash Functions (UOWHF)
-

$$
\operatorname{Pr}\left[\begin{array}{rl}
(x, \text { state }) \leftarrow \mathcal{A}\left(1^{n}\right), & \\
i \stackrel{\$ \neq x^{\prime} \wedge}{\leftarrow} \operatorname{Gen}\left(1^{n}\right), & : \\
x^{\prime} \leftarrow \mathcal{A}(i, \text { state }) & h_{i}(x)=h_{i}\left(x^{\prime}\right)
\end{array}\right] \leqslant \mu(n)
$$

- Can be constructed from OWF [Rompel90]
- Suffices for Digital Signatures [Naor-Yung89]

Remarks (contd.)

- Weaker notion: Universal One-way Hash Functions (UOWHF)
-

$$
\operatorname{Pr}\left[\begin{array}{rl}
(x, \text { state }) \leftarrow \mathcal{A}\left(1^{n}\right), & \\
i \neq \$ \operatorname{Gen}\left(1^{n}\right),, & x \neq x^{\prime} \wedge \\
x^{\prime} \leftarrow \mathcal{A}(i, \text { state }) & h_{i}(x)=h_{i}\left(x^{\prime}\right)
\end{array}\right] \leqslant \mu(n)
$$

- Can be constructed from OWF [Rompel90]
- Suffices for Digital Signatures [Naor-Yung89]
- More efficient construction [Haitner-Holenstein-Reingold-Vadhan-Wee10]

One-time Signatures for Long Messages

- Let $H=\left\{h_{i}:\{0,1\}^{*} \rightarrow\{0,1\}^{n}\right\}_{i \in I}$ be a CRHF

One-time Signatures for Long Messages

- Let $H=\left\{h_{i}:\{0,1\}^{*} \rightarrow\{0,1\}^{n}\right\}_{i \in I}$ be a CRHF
- Idea: Sign $h_{i}(m)$ instead of m using Lamport signature

One-time Signatures for Long Messages

- Let $H=\left\{h_{i}:\{0,1\}^{*} \rightarrow\{0,1\}^{n}\right\}_{i \in I}$ be a CRHF
- Idea: Sign $h_{i}(m)$ instead of m using Lamport signature
- Think: Proof?

Multi-message Signatures (via chain)

- $\left(s k_{0}, p k_{0}\right) \stackrel{\S}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$

Multi-message Signatures (via chain)

- $\left(s k_{0}, p k_{0}\right) \stackrel{\$}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$
- Initialize: $\tilde{\sigma}_{i}=\emptyset, i=1$

Multi-message Signatures (via chain)

- $\left(s k_{0}, p k_{0}\right) \stackrel{\$}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$
- Initialize: $\tilde{\sigma}_{i}=\emptyset, i=1$
- To sign m_{i} :

Multi-message Signatures (via chain)

- $\left(s k_{0}, p k_{0}\right) \stackrel{\$}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$
- Initialize: $\tilde{\sigma}_{i}=\emptyset, i=1$
- To sign m_{i} :
- $\left(s k_{i}, p k_{i}\right) \stackrel{\$}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$

Multi-message Signatures (via chain)

- $\left(s k_{0}, p k_{0}\right) \stackrel{\$}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$
- Initialize: $\tilde{\sigma}_{i}=\emptyset, i=1$
- To sign m_{i} :
- $\left(s k_{i}, p k_{i}\right) \stackrel{\oiint}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$
- $\tilde{\sigma}_{i} \leftarrow \operatorname{Sign}_{s k_{i-1}}\left(m_{i} \| p k_{i}\right)$

Multi-message Signatures (via chain)

- $\left(s k_{0}, p k_{0}\right) \stackrel{\$}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$
- Initialize: $\tilde{\sigma}_{i}=\emptyset, i=1$
- To sign m_{i} :
- $\left(s k_{i}, p k_{i}\right) \stackrel{\oiint}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$
- $\tilde{\sigma}_{i} \leftarrow \operatorname{Sign}_{s k_{i-1}}\left(m_{i} \| p k_{i}\right)$
- Output: $\sigma_{i}=\left(i, \tilde{\sigma}_{i}, m_{i}, p k_{i}, \sigma_{i-1}\right)$

Multi-message Signatures (via chain)

- $\left(s k_{0}, p k_{0}\right) \stackrel{\$}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$
- Initialize: $\tilde{\sigma}_{i}=\emptyset, i=1$
- To sign m_{i} :
- $\left(s k_{i}, p k_{i}\right) \stackrel{\oiint}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$
- $\tilde{\sigma}_{i} \leftarrow \operatorname{Sign}_{s k_{i-1}}\left(m_{i} \| p k_{i}\right)$
- Output: $\sigma_{i}=\left(i, \tilde{\sigma}_{i}, m_{i}, p k_{i}, \sigma_{i-1}\right)$
- Increment i

Multi-message Signatures (via chain)

- $\left(s k_{0}, p k_{0}\right) \stackrel{\$}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$
- Initialize: $\tilde{\sigma}_{i}=\emptyset, i=1$
- To sign m_{i} :
- $\left(s k_{i}, p k_{i}\right) \stackrel{\oiint}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$
- $\tilde{\sigma}_{i} \leftarrow \operatorname{Sign}_{s k_{i-1}}\left(m_{i} \| p k_{i}\right)$
- Output: $\sigma_{i}=\left(i, \tilde{\sigma}_{i}, m_{i}, p k_{i}, \sigma_{i-1}\right)$
- Increment i
- Think: Proof?

Multi-message Signatures (via chain)

- $\left(s k_{0}, p k_{0}\right) \stackrel{\$}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$
- Initialize: $\tilde{\sigma}_{i}=\emptyset, i=1$
- To sign m_{i} :
- $\left(s k_{i}, p k_{i}\right) \stackrel{\oiint}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$
- $\tilde{\sigma}_{i} \leftarrow \operatorname{Sign}_{s k_{i-1}}\left(m_{i} \| p k_{i}\right)$
- Output: $\sigma_{i}=\left(i, \tilde{\sigma}_{i}, m_{i}, p k_{i}, \sigma_{i-1}\right)$
- Increment i
- Think: Proof?
- Think: How to reduce signature size?

Multi-message Signatures (via chain)

- $\left(s k_{0}, p k_{0}\right) \stackrel{\$}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$
- Initialize: $\tilde{\sigma}_{i}=\emptyset, i=1$
- To sign m_{i} :
- $\left(s k_{i}, p k_{i}\right) \stackrel{\oiint}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$
- $\tilde{\sigma}_{i} \leftarrow \operatorname{Sign}_{s k_{i-1}}\left(m_{i} \| p k_{i}\right)$
- Output: $\sigma_{i}=\left(i, \tilde{\sigma}_{i}, m_{i}, p k_{i}, \sigma_{i-1}\right)$
- Increment i
- Think: Proof?
- Think: How to reduce signature size?
- Read: Tree-based signatures

Multi-message Signatures (via chain)

- $\left(s k_{0}, p k_{0}\right) \stackrel{\S}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$
- Initialize: $\tilde{\sigma}_{i}=\emptyset, i=1$
- To sign m_{i} :
- $\left(s k_{i}, p k_{i}\right) \stackrel{\oiint}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$
- $\tilde{\sigma}_{i} \leftarrow \operatorname{Sign}_{s k_{i-1}}\left(m_{i} \| p k_{i}\right)$
- Output: $\sigma_{i}=\left(i, \tilde{\sigma}_{i}, m_{i}, p k_{i}, \sigma_{i-1}\right)$
- Increment i
- Think: Proof?
- Think: How to reduce signature size?
- Read: Tree-based signatures
- Read: Efficient Signatures from Trapdoor Permutations in the Random Oracle Model

