Homework 1

(Due Date: Sep 21, 2015)

1. (5 points) Prove that if $\mu_{1}(\cdot)$ is a non-negligible function and $\mu_{2}(\cdot)$ is a negligible function, then $\mu(\cdot)$ is also a non-negligible function, where $\mu(n)=\mu_{1}(n)-\mu_{2}(n)$ for any $n \in \mathbb{N}$.
2. (10 points) Consider a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$. Let \mathcal{A} be a randomized algorithm that computes f with probability $\frac{3}{4}$. Given \mathcal{A}, construct a randomized algorithm \mathcal{B} that computes f with probability at least $1-\frac{1}{2^{n}}$.
3. (15 points) Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ be a strong one-way function. Consider the following function $g:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$:

$$
g(x)=\left\{\begin{array}{rll}
0^{m} & : & x=0^{n} \\
f(x) & : & \text { otherwise }
\end{array}\right\}
$$

Prove that g is a strong one-way function.
4. ($5+15$ points) Given a weak one-way function f, construct a strong one-way function g. Give the construction of g and security proof.
5. (Extra Credit Problem) Construct f such that f is a strong one-way function but $f(f(\cdot))$ is not one way.
6. (Extra Credit Problem) Define a function f such that, if there exists a one-way function, then f is a one-way function.

